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Abstract

Identifying the features of objects becomes a challengenvthese features can
change in their appearance. We introduce the TransfornadriBuffet Process
(tIBP), and use it to define a nonparametric Bayesian modelitifiers features
that can transform across instantiations. We show thatntlndel can identify
features that are location invariant by modeling a prevexgeriment on human
feature learning. However, allowing features to transfadds new kinds of am-
biguity: Are two parts of an object the same feature withedéht transformations
or two unique features? What transformations can featurésrgn? We present
two new experiments in which we explore how people resolesdhguestions,
showing that the tIBP model demonstrates a similar seitgitiv context to that
shown by human learners when determining the invariantcaspé features.

1 Introduction

One way the human brain manages the massive amount of senfmyation it receives is by
learninginvariants— regularities in its input that do not change across mamgudtisharing some
property of interest. Learning and using invariants is esakto many aspects of cognition and
perception [1]. For example, the retinal image of an objelsinges with viewpoint and location, yet
people can still identify the object. One explanation fas ttapability is the visual system recognizes
that the features of an object can occur differently acrassgntations, but will be transformed
in a few predictable ways. Representing objects in termswariant features poses a challenge
for models of feature learning. From a computational perthge unsupervised feature learning
involves recognizing regularities that can be used to cathp@&ncode the observed stimuli [2].
When features have the same appearance and location, teebrsiach as factorial learning [3] or
various extensions of the Indian Buffet Process (IBP) [4jehlbeen successful at learning features,
and show some correspondence to human performance [5]rtuinédely, invariant features do not
always have the same appearance or location, by definitiespil2 this, people are able to identify
invariant features (e.g., [6]), meaning that new machi@enieg methods need to be explored to
fully understand human behavior.

We propose an extension to the IBP called the TransformeidnnBuffet Process (tIBP), which
infers features that vary across objects. Analogous to hewitansformed Dirichlet Process extends
the Dirichlet Process [7], the tIBP associates a parameiteremch instantiation of a feature that
determines how the feature is transformed in the given im@jgis allows for unsupervised learning
of features that are invariant in location, size, or origata After defining the generative model for
the tIBP and presenting a Gibbs sampling inference algarithe show that this model can learn
visual features that are location invariant by modeling/janes behavioral results (from [6]).

We talk about objects, images, and scenes having features dependhgyapntext.
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Figure 1: Ambiguous representations. (a) Does this obgat bne feature that contains two vertical
bars or two features that each contain one vertical bar? rp)ese two shapes the same? The shape
on the left is typically perceived as a square and the shagheoright is typically perceived as a
diamond despite being objectively equivalent after a fiansation (a 45 degree rotation).

One new issue that arises from inferring invariant featigéisat it can be ambiguous whether parts
of an image are the same feature with different transfoonator different features. For example,
an object containing two vertical bars has (at least) twoasgntations: a single feature containing
two vertical bars a fixed distance apart, or two features eaahich is a vertical bar with its own
translational transformation (see Figure 1 (a)). The tIBgests an answer to this question: pick
the smallest feature representation that can encode ahwdis objects. By presenting objects that
are either the two vertical bars a fixed distance apart thatimgosition or two vertical bars varying
independently in location, we confirm that people use setdbcts to infer invariant features in a
behavioral experiment and that the different feature ig&ations lead to different decisions.

Introducing transformational invariance also raises thestjon of what kinds of transformations
a feature can undergo. A classic demonstration of the diffimf defining a set of permissable
transformations is the Mach square/diamond [8]. Are the $ivapes in Figure 1 (b) the same?
The shape on the right is typically perceived as a diamondevthe shape on the left is seen as a
square, despite being identical except for a rotationakfamation. We extend the tIBP to include
variables that select the transformations each featuliged to undergo. This raises the question
of whether people can infer the permissable transformsiiéa feature. We demonstrate that this is
the case by showing that people vary in their generalizatitom a square to a diamond depending
on whether the square is shown in the context of other sqttzaesary in rotation. This provides an
interesting new explanation of the Mach square/diamondpledearn the allowed transformations
of features for a given shape, not what transformationsaitifes are allowed over all shapes.

2 Unsupervised feature learning using nonparametric Bayean statistics

One common approach to unsupervised learning is to expliéfine the generative process that
created the observed data. Latent structure can then b#fieléioy inverting this process using
Bayesian inference. Nonparametric Bayesian models casdxtin this way to infer latent struc-
ture of potentially unbounded dimensionality [9]. The kdBuffet Process (IBP) [4] is a stochastic
process that can be used as a prior in nonparametric Bay@sidals where each object is repre-
sented using an unknown but potentially infinite set of lafeatures.

2.1 Learning features using the Indian Buffet Process

The standard treatment of feature learning using nonpdranBayesian models factors the obser-
vations into two latent structures: (1) a binary ma#ixhat denotes which objects have each feature,
and (2) a matrixXY that represents how the features instantiated. If therévapbjects andx fea-
tures, therZ is aN x K binary matrix (where object has featuré: if z,,, = 1) andY isaK x D
matrix (whereD is the dimensionality of the observed properties of eachaipg.g., the number of
pixels in an image). The IBP defines a probability distribatoverZ when K — oo such that only
a finite number of the columns are non-zero (with prob. 1 fatdifv). This distribution is
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wherea is a parameter affecting the number of non-zero entriesémihtrix, K, is the number
of features with history: (the history is the corresponding column of each featurterjmeted as
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a binary number)K, is the number of columns with non-zero entriésy; is the N-th harmonic
number, andn;, is the number of objects that have featlr&ypically, a simple parametric model is
used forY (Gaussian for generating real-valued observations, andgli for binary observations).

The observed properties of objects can be summarizedAh>a D matrix X. The vectorx,,
representing the properties of objecis generated based on its featuzgsand the matriXY. This
can be done using a linear-Gaussian likelihood for reala@lproperties [4], or a noisy-OR for
binary properties [10]. All of the modeling results in thigper use the noisy-OR, with

P(@na =12,Y) = 1-(1=X"Y(1—¢) )

wherex,, 4 is thedth observed property of theth object, andy; is the corresponding column &f.

2.2 The Transformed Indian Buffet Process (tIBP)

Following Sudderth et al’s [7] extension of the DirichlaoPess, the Transformed Indian Buffet
Process (tIBP) allows features to be transformed. The foanations are object-specific, so in
a sense, when an object takes a feature, the feature isdaranexf with respect to the object. Let
9(Y|3) be a prior probability distribution o parameterized by, ®(n) be a distribution over a set
of transformations parameterizedhyr,, be a vector of transformations of the feature instantiation
for objectn, and f (x,|r.(Y), z,, ) be the data distribution angbe any other parameters used in
the data distribution. The following generative procedinés the tIBP:

Zlo  ~IBP(a) Pkl ~ o (n)

Y‘/B Ng(ﬁ) Xn|rnvzn7Y7A/ Nf(xn|rn(Y)7znv'V)

In this paper, we focus on binary images where the transfiwmsaare drawn uniformly at random
from a finite set (though Section 5.1 uses a slightly more dimaied distribution). The reason for
this (instead of using a Dirichlet process over transforoma) is that we are interested in modeling
invariances in translation, size, or rotation and to mod&ldes where a feature occurs in a novel
translation, size, or rotation effectively, it is necegdar them to have non-zero probability. In this
section, we focus on translations. Assuming our data af@,n}”1* P2, a translation shifts the
starting place of its feature in each dimensiony = (d,d>). We assume a discrete uniform
prior on shifts:r,;, ~ U{0,...,Dy — 1} x U{0,..., Dy — 1}. Each transformation results in a
new interpretation of the feature, (y4). The likelihoodp(x,.q = 1|Z,Y,R) is then identical to
Equation 2, substituting the vector of transformed feainterpretations:,, (yq) for y 4.

2.3 Inference by Gibbs sampling

We sample from the posterior distribution on feature asamgmtsZ, feature interpretation¥’, and
transformation®R given observed propertié§ using Gibbs sampling [11]. The algorithm consists
of iteratively drawing each variable conditioned on therent values of all other variables.

For features withn, > 0 (after removal of the current value of;), we drawz,,;, by marginalizing
over transformations. This avoids a bottleneck in sampksgptherwise we would have to get lucky
in drawing the right feature and transformation. The matimation can be done directly, with

P(Znk|Z_ (i), R_(niy, Y, X) = ZP(ZnHZf(nk), R, Y, X)p(rnk) 3)
Tnk

where the first term on the right hand side is proportionah(to, |z,, Y, R)p(2,k|Z_ (nk)) (Pro-
vided by the likelihood and the IBP prior respectively, wih .,y being all ofZ exceptz,;), and
the second term is uniform over all;.. If z,,,, = 1, we then sample,,, from

p(rnk|znk =1, Zf(nk)v Rf(nk:)a Y, X) X p(Xn|Zn, Y, R)p(’l‘nk) (4)
where the relevant probabilities are also used in comp@ngation 3, and can thus be cached.

We follow Wood et al.'s [10] method for drawing new featurés. (features for which currently
my, = 0). First, we draw an auxilary variabl&?*", the number of “new” features, from

p(K;ICW|X7MZn71:(K+K7“leW)aY7R) X p(X7L|ZnCW7YaK:LICW)P(K:;CW) (5)



whereZ"*" is Z augmented with°" new columns containing ones in row From the IBP, we
know that K;;*" ~ Poissotie/N) [4]. To compute the first term on the right hand side, we need
to marglnallze over the possible new feature images and titegisformations Y (k1. (K+Kxnew)
andR,, (g 41): (K4 Knew) ))- We assume that the first object to take a feature takes s icenonical
form and thus it is not transformed. Since the first transtdiom of a feature and its interpretation
in an image are not identifiable, this assumption is valid maadessary to aid in inference. With
no transformations, drawing the new features in the noiBytBBP model is equivalent to drawing
the new features in the normal noisy-OR IBP model. Thus, weusa the same sampling step for
K3 as [10]. LetZ™®Y = Z,, 1.k 4 knew). Continuing the previous equation,

pER]) o p(EG) [ p(end 2%, Y, R, KG) (6)
d

aK::ewe a

= e (1- =g = nEm o0 - pyE) @

wherer,, (y4) is the vector of transformed feature interpretations alolgerved dimensiod.

Finally, to complete each Gibbs sweep we resample the aiterpretationsY) given the state
of the other variables. We sample eagh independently given the state of the other variables, with

PWkal X, Z, RY _(ra)) < p(X[Y, Z, R)p(yra) (8)
wherep(X|Y, Z, R) is the likelihood, given by the noisy-OR function.

2.4 Prediction

To compare the feature representations our model infersttavioral results, we need to have judge-
ments of the model for new test objects. This is a predictimiblem: computing the probability of
a new objeck .1 given the set ofV observed objectX. We can express this as

P(xyp|X) = Y P(xy:1,Z,Y,RX)= Y  P(xnlZ Y,R)P(ZY,RX). (9)
Z,Y R Z, Y R

The Gibbs sampling algorithm gives us samples fiB(Z, Y, R|X) that can be used to approxi-
mate this sum. However, a further approximation is requicedomputeP (xy+1|Z,Y,R). For
each sweep of Gibbs sampling, we sample a vector of featares and corresponding transfor-
mationsr 4 for a new object from their conditional distribution givemetvalues ofZ, Y, and

R in that sweep, under the constraint that no new featuresearergted. We use these samples to
approximate the calculation ét(xy1]Z, Y, R) by marginalizing over 1 andry 1.

3 Demonstration: Learning Translation Invariant Features

In many situations learners need to form a feature repragentof a set of objects, and the features
do not reoccur in the exact same location. A common strateggdaling with this problem is to
pre-process data to build in the relevant invariances hoplsi to tabulate the presence or absence of
features without trying to infer them from the data (e.g2])J1 The tIBP provides a way for a learner
to discover that features are translation invariant, andfes them directly from the data.

Fiser and colleagues [6, 12] showed that when two parts ohage always occur together (forming
a “base pair”), people expect the two parts to occur togethéirthey had one feature representing
the pair. In Experiments 1 and 2 of [6], participants viewdd &cenes, where each scene contained
three of the six base pairs in varied spatial location. Eaatelpair was two of twelve parts in
a particular spatial arrangment. Afterwards, participattiose which of two images was more
familiar: a base pair (in a never seen before location) aidbpparts that occured together at least
once (but were not a base pair). Participants strongly pesfehe base pair. To demonstrate the
ability of tIBP to infer translation invariant features theae made up of complex parts, we trained
the model on the scenes with the same structure as those sharticipants. The only difference
was to lower the dimensionality of the images by recodindhgert to be a 3 by 3 pixel image (the
images from [6] were 1200 by 900 pixels). Figure 2 (a) shoveskthsic parts (grouped into their
base pairs), while 2 (b) shows one scene given to the modglré-P (c) shows the features inferred
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Figure 2: Learning translation invariant features. (a)leefcthe parts used to form base pairs, with
base pairs grouped in rectangles. (b) One example scenEedtjres inferred by the tIBP model
(one sample from the Gibbs sampler). The tIBP infers the pass as features.

by the tIBP model (one sample from the Gibbs sampler afte0 Iif#dations with a 50 iteration
burn-in), given the 144 scenes. The parameters were inéttoa = 0.8, ¢ = 0.05, A = 0.99, and

p = 0.4. The model reconstructs the base pairs used to generatadlges$, and learns that the base
pairs can occur in any location. To compare the model pesfdaiiliarity judgments, we calculated
the model’s predictive probability for each base pair inwa faxation and for a part in that base pair
with another part that co-occured with it at least once (loiima base pair). Over all comparisons,
the tIBP model gave higher probability to the image contajrthe base pair.

4 Experiment 1: One feature or two features transformed?

A new problem arises out of learning features that can toansfls an image composed of the same
feature multiple times with different instantiations oitisomposed with different features that may
or may not be transformed? One way to decide between twolgessature representations for the
object is to pick the features that allow you to encode theatgnd the other objects it is associated
with. For example, the object from Figure 1 (a) is the firsteabj(from the top left) in the two
sets of objects shown in Figure 3. Figure 3 (a) istinéizedobject set. All of the objects in this
set can be represented as translations of one feature tfwai igertical bars. Although this object
set can also be described in terms of two features (each ahwdre vertical bars that can each
translate independently), it is a surprising coincideed the two vertical bars are always the same
distance apart over all of the objects in the set. Figure &(theseparateobject set. This set is best
represented in terms of two features, where each is a Vidraca

Using different feature representations leads to diffepeadictions about what other objects should
be expected to be in the set. Representing the objects witigke $eature containing two vertical
bars predicts new objects that have vertical bars wherevihdars are the same distance apiew
Unitized. These objects are also expected under the feature repaten that is two features that
are each vertical bars; however, any object with two verbess is expected\ew Separaje— not
just those with a particular distance apart. Thus, intéipgeobjects with different feature repre-
sentations has consequences for how to generalize set m&igheln the following experiment,
we test these predictions by asking people after viewirfieeitheunitizedor separateobject sets
to judge how likely theNew Unitizedor New Separatebjects are to be part of the object set they
viewed. We then compare the behavioral results to the fesinferred by the tIBP model and the
predictive probability of each of the test objects givenreafthe object sets.
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Figure 3: Training sets for Experiment 1. (a) Objects madmfspatial translations of the unitized
feature. (b) Objects made from spatial translations of tejasate features. The number of times
each vertical bar is present is the same in the two object sets
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Figure 4: Results of Experiment 1. (a) Human judgments. Umidzedgroup only rated those
images with two vertical bars close together highly. Beparategroup rate any image with two
vertical bars highly. (b) The predictions by the tIBP model.

4.1 Methods

A total of 40 participants were recruited online and comp#g a small amount. Three participants
were removed for failing to complete the task leaving 19 a8darticipants in theseparateand
unitizedconditions respectively. There were two phases to the erpet: training and test. In the
training phase, participants read this cover story (adbfoten [13]): “Recently a Mars rover found

a cave with a collection of different images on its walls. Arteof scientists believes the images
could have been left by an alien civilization. The sciestete hoping to understand the images so
they can find out about the civilization.” They then lookedotigh the eight images (which were
either theunitizedor separateobject set in a random order) and scrolled down to the nexiosec
once they were ready for the test phase. Once they scrolled tiothe next section, they were
informed that there were many more images on the cave waliiibaover had not yet had a chance
to record. Their task for the test phase was to rate how likala scale from 0 to 6 they believed
the rover would see each image as it explored further thrtluglbave. There were nine test images
presented in a random orde3een Botl{an image in both training setsJeen Unitan image that
only theunitizedgroup saw)Seen Sefan image only theeparategroup saw)New Unit(an image
valid under the unitized feature seljew Sefa image valid under separate feature set), and four
other images that acted as controls (the images are undeotizental axes of Figure 4).

4.2 Results

Figure 4 (a) shows the average ratings made by participamadh group for the nine test images.
Over the nine test images, teeparategroup rated th&een Sefr(35) = 6.40, p < 0.001) andNew
Sep(t(35) = 5.43, p < 0.001) objects higher than thenitizedgroup, but otherwise did not rate any
of the other test images significantly different. As preglitiby the above analysis, thaitizedgroup
believed the Mars rover was likely to encounter the two insagebserved and thidew Unitimage
(the unitizedfeature in a new horizontal position), but did not think itwid encounter the other
objects. Theseparategroup rated any image with two vertical bars highly. Thisidades that they
represent the images using two features each containinggke siertical bar varying in horizontal
position. Thus, each group of participants infer a set ofuiess invariant over the set of observed
objects (taking into account the different horizontal fiosi of the features in each object).

Figure 4 (b) shows the predictions made by the tIBP model vgiesn each object set. The pre-
dictive probabilities for the test objects were calculatsihg the procedure outlined above (with
the parameter values from Section 3), using 1000 iteratidr@ibbs sampling and a 50 iteration
burn-in. A non-linear monotonic transformation of theselabilities was used for visualization,
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Figure 5: Stimuli for investigating how different types of/ariances are learned for different object
classes. (a) Thmtation training set. (b) Thesizetraining set. (c) Two new objects for testing the
inferred type of invariance Wew Rotatiorand aNew Sizebject.

raising the unnormalized probabilities to the power of @8 renormalizing. The Spearman’s rank
order correlation between the model’s predictions and mujmdgments is 0.85. Qualitatively, the
model’s predictions are good; however, it incorrectly peesithat theseparatecondition should rate
the 1 Bar test image highly. Unlike the participants in theparatecondition, the model does not
infer that each object has two features and so having onlyeatare is not a good object. This sug-
gests that while learning the feature representation fet afbjects, people also learn the number
of features each object typically has. Investigating hoapbe infer expectations about the number
of features objects have is an interesting phenomenon émaadds further study.

5 Experiment 2: Learning the type of invariance

A natural next step for improving the tIBP would be to makegheof transformation& larger and
thus extend the number of possible invariants that can lbeddaAlthough this may be appropriate
from a machine learning perspective, it is inappropriateuioderstanding human cognition. Re-
call the Mach square/diamond example in Figure 1 (b). Mampsh are equivalent when rotated,;
however, rotational invariance does not hold for all shapéss example teaches a counterintuitive
moral: The best approach is not to include as many transtansas possible into the model.

Though rotations are not valid transformations for whatgde@ommonly consider to be squares,
they are appropriate for many objects. This suggests tlmgl@énfer the set of allowable transfor-
mations for different classes of objects. Given the thrgeatb in Figure 5 (a) (theotation set) it
seems clear that thidew Rotationobject in Figure 5 (c) belongs in the set, but not NMew Size
object. The reverse holds for the three objects from theofefftigure 5 (b), thesizeset. To explore
this phenomenon, we first extend the tIBP to infer the appatpset of transformations by intro-
ducing latent variables for each feature that indicate Wwhiansformations it is allowed to use. We
demonstrate this extension to the tIBP predictsNlea/ Rotatiorobject when given theotation set
and predicts thélew Sizeobject when given theizeset — effectively learning the appropriate type
of invariance for a given object class. Finally, we confirmr ourospective argument that people
infer the type of invariance appropriate to the observesisctd objects.

5.1 Learning invariance type using the tIBP

It is straightforward to modify the tIBP such that the typdrainsformations allowed on a feature is
inferred as well. This is done by introducing a hidden vegdbr each feature that indicate the type
of transformation allowed for that feature. Then, the feattansformation is generated conditioned
on this hidden variable from a probability distribution sifie to the transformation type.

The experiment in this section is learning whether or notfdaure defining a set of objects is
either rotation or size invariant. Formally, we model th&ng a generative process that is the
same as the tIBP, but introduces the latent varigblhich determines the type of transformation
allowed by feature:. If ¢, = 1, then rotational transformations are drawn frdm (which is the
discrete uniform distribution distribution ranging in rtiples of fifteen degrees from zero to 45).
If t;, = 0, then size transformations are drawn frdm (which is the discrete uniform distribution

over([3/8,3/7,3/5,5/7,1,7/5,11/7,5/3,11/5,7/3,11/3]). We assume;, ¥ Bernoulli(r).

The inference algorithm for this extension is the same aghi@IitIBP except we need to infer the
values oft,.. We drawt;, using a Gibbs sampling scheme while marginalizing avgr. . ., 7.,

p(tk|X7Y7Z7R7katfk) X Zp(xn|Tnk7tk7Y7Z7R7k7t7k)p(rk|tk)p(tk)' (10)

Tnk
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Figure 6: Results of Experiment 2. (a) Responses of humditipants. (b) Model predictions.

Prediction is as above exceptgives the set of transformations each feature is allowedke. t

5.2 Methods

A total of 40 participants were recruited online and compésd a small amount, with 20 partici-
pants in both training conditionsotation andsizg. The cover story from Experiment 1 was used.
Participants observed the three objects in their traingigaed then generalize on a scale from 0 to
6 to five test objectsSame Botlfthe object that is in both training set§ame Rofthe last object of
therotation sej, Same Siz&he last object of theize set New RotandNew Size

5.3 Results

Figure 6 (a) shows the average human judgments. As exp@etaitjpants in theotation condition
generalize more to thdew Rotobject than thesizecondition (unpaired(38) = 4.44,p < 0.001)
and vice versa for thblew Sizeobject (unpaired(38) = 5.34,p < 0.001). This confirms our hy-
pothesis; people infer the appropriate set of transfoilnat{a subset of all transformations) features
are allowed to use for a class of objects. Figure 6 (b) showsnihdel predictions with parameters
settoa = 2,¢ = 0.01, A = 0.99, p = 0.5, andw = 0.5 and using the same visualizing technique
as Experiment 1 (with” = 0.005), run for 1000 iterations (with a burn-in of 50 iterations) the
sets of images (downsampled to 38 by 38 pixels). Qualitigtitiee extended tIBP model has nearly
the same pattern of results as the participants in the expati The only issue being that it gives
high probability to theSame Sizevhen given theotation set an artifact from downsampling. The
Spearman’s rank order correlation between the model'sigiieds and human judgments is 0.68.
Importantly, the model predicts that only when given thition setshould participants generalize
to theNew Robbject and only when given ttgéze seshould they generalize to tiNew Sizebject.

6 Conclusions and Future Directions

In this paper, we presented a solution to how people infeufeaepresentations that are invariant
over transformations and in two behavioral experimentdigord two predictions of a new model
of human unsupervised feature learning. In addition toghmmtributions, we proposed a first
sketch of a new computational theory of shape representatithe features representing an object
are transformed relative to the object and the set of tram&ftions a feature is allowed to undergo
depends on the object’s context. In the future, we wouldtbikgursue this theory further, expanding
the account of learning the types of transformations antbeixyg how the transformations between
features in an object interact (we should expect some ictieradue to real world constraints on
the transformations, e.g., prospective geometry). Binalé hope to include other facets of visual
perception into our model, like a perceptually realistimpon feature instantiations and features
relations (e.g., the horizontal bar is always ON TOP OF théoad bar).
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