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Abstract

Identifying the features of objects becomes a challenge when those features can
change in their appearance. We introduce the Transformed Indian Buffet Process
(tIBP), and use it to define a nonparametric Bayesian model that infers features
that can transform across instantiations. We show that thismodel can identify
features that are location invariant by modeling a previousexperiment on human
feature learning. However, allowing features to transformadds new kinds of am-
biguity: Are two parts of an object the same feature with different transformations
or two unique features? What transformations can features undergo? We present
two new experiments in which we explore how people resolve these questions,
showing that the tIBP model demonstrates a similar sensitivity to context to that
shown by human learners when determining the invariant aspects of features.

1 Introduction

One way the human brain manages the massive amount of sensoryinformation it receives is by
learninginvariants— regularities in its input that do not change across many stimuli sharing some
property of interest. Learning and using invariants is essential to many aspects of cognition and
perception [1]. For example, the retinal image of an object1 changes with viewpoint and location, yet
people can still identify the object. One explanation for this capability is the visual system recognizes
that the features of an object can occur differently across presentations, but will be transformed
in a few predictable ways. Representing objects in terms of invariant features poses a challenge
for models of feature learning. From a computational perspective, unsupervised feature learning
involves recognizing regularities that can be used to compactly encode the observed stimuli [2].
When features have the same appearance and location, techniques such as factorial learning [3] or
various extensions of the Indian Buffet Process (IBP) [4] have been successful at learning features,
and show some correspondence to human performance [5]. Unfortunately, invariant features do not
always have the same appearance or location, by definition. Despite this, people are able to identify
invariant features (e.g., [6]), meaning that new machine learning methods need to be explored to
fully understand human behavior.

We propose an extension to the IBP called the Transformed Indian Buffet Process (tIBP), which
infers features that vary across objects. Analogous to how the Transformed Dirichlet Process extends
the Dirichlet Process [7], the tIBP associates a parameter with each instantiation of a feature that
determines how the feature is transformed in the given image. This allows for unsupervised learning
of features that are invariant in location, size, or orientation. After defining the generative model for
the tIBP and presenting a Gibbs sampling inference algorithm, we show that this model can learn
visual features that are location invariant by modeling previous behavioral results (from [6]).

1We talk about objects, images, and scenes having features depending on the context.
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Figure 1: Ambiguous representations. (a) Does this object have one feature that contains two vertical
bars or two features that each contain one vertical bar? (b) Are these two shapes the same? The shape
on the left is typically perceived as a square and the shape onthe right is typically perceived as a
diamond despite being objectively equivalent after a transformation (a 45 degree rotation).

One new issue that arises from inferring invariant featuresis that it can be ambiguous whether parts
of an image are the same feature with different transformations or different features. For example,
an object containing two vertical bars has (at least) two representations: a single feature containing
two vertical bars a fixed distance apart, or two features eachof which is a vertical bar with its own
translational transformation (see Figure 1 (a)). The tIBP suggests an answer to this question: pick
the smallest feature representation that can encode all observed objects. By presenting objects that
are either the two vertical bars a fixed distance apart that vary in position or two vertical bars varying
independently in location, we confirm that people use sets ofobjects to infer invariant features in a
behavioral experiment and that the different feature representations lead to different decisions.

Introducing transformational invariance also raises the question of what kinds of transformations
a feature can undergo. A classic demonstration of the difficulty of defining a set of permissable
transformations is the Mach square/diamond [8]. Are the twoshapes in Figure 1 (b) the same?
The shape on the right is typically perceived as a diamond while the shape on the left is seen as a
square, despite being identical except for a rotational transformation. We extend the tIBP to include
variables that select the transformations each feature is allowed to undergo. This raises the question
of whether people can infer the permissable transformations of a feature. We demonstrate that this is
the case by showing that people vary in their generalizations from a square to a diamond depending
on whether the square is shown in the context of other squaresthat vary in rotation. This provides an
interesting new explanation of the Mach square/diamond: People learn the allowed transformations
of features for a given shape, not what transformations of features are allowed over all shapes.

2 Unsupervised feature learning using nonparametric Bayesian statistics

One common approach to unsupervised learning is to explicitly define the generative process that
created the observed data. Latent structure can then be identified by inverting this process using
Bayesian inference. Nonparametric Bayesian models can be used in this way to infer latent struc-
ture of potentially unbounded dimensionality [9]. The Indian Buffet Process (IBP) [4] is a stochastic
process that can be used as a prior in nonparametric Bayesianmodels where each object is repre-
sented using an unknown but potentially infinite set of latent features.

2.1 Learning features using the Indian Buffet Process

The standard treatment of feature learning using nonparametric Bayesian models factors the obser-
vations into two latent structures: (1) a binary matrixZ that denotes which objects have each feature,
and (2) a matrixY that represents how the features instantiated. If there areN objects andK fea-
tures, thenZ is aN ×K binary matrix (where objectn has featurek if znk = 1) andY is aK ×D
matrix (whereD is the dimensionality of the observed properties of each object, e.g., the number of
pixels in an image). The IBP defines a probability distribution overZ whenK → ∞ such that only
a finite number of the columns are non-zero (with prob. 1 for finite N ). This distribution is

P (Z) =
αK+

∏2N
−1

h=1 Kh!
exp{−αHN}

K+
∏

k=1

(N − mk)!(mk − 1)!

N !
(1)

whereα is a parameter affecting the number of non-zero entries in the matrix,Kh is the number
of features with historyh (the history is the corresponding column of each feature, interpreted as
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a binary number),K+ is the number of columns with non-zero entries,HN is theN -th harmonic
number, andmk is the number of objects that have featurek. Typically, a simple parametric model is
used forY (Gaussian for generating real-valued observations, or Bernoulli for binary observations).

The observed properties of objects can be summarized in aN × D matrix X. The vectorxn

representing the properties of objectn is generated based on its featureszn and the matrixY. This
can be done using a linear-Gaussian likelihood for real-valued properties [4], or a noisy-OR for
binary properties [10]. All of the modeling results in this paper use the noisy-OR, with

p(xnd = 1|Z,Y) = 1 − (1 − λ)znyd(1 − ǫ) (2)

wherexnd is thedth observed property of thenth object, andyd is the corresponding column ofY.

2.2 The Transformed Indian Buffet Process (tIBP)

Following Sudderth et al.’s [7] extension of the Dirichlet Process, the Transformed Indian Buffet
Process (tIBP) allows features to be transformed. The transformations are object-specific, so in
a sense, when an object takes a feature, the feature is transformed with respect to the object. Let
g(Y|β) be a prior probability distribution onY parameterized byβ, Φ(η) be a distribution over a set
of transformations parameterized byη, rn be a vector of transformations of the feature instantiations
for objectn, andf(xn|rn(Y), zn, γ) be the data distribution andγ be any other parameters used in
the data distribution. The following generative process defines the tIBP:

Z|α ∼ IBP(α) rnk|η
iid
∼ Φ(η)

Y|β ∼ g(β) xn|rn, zn,Y, γ ∼ f(xn|rn(Y), zn, γ)

In this paper, we focus on binary images where the transformations are drawn uniformly at random
from a finite set (though Section 5.1 uses a slightly more complicated distribution). The reason for
this (instead of using a Dirichlet process over transformations) is that we are interested in modeling
invariances in translation, size, or rotation and to model images where a feature occurs in a novel
translation, size, or rotation effectively, it is necessary for them to have non-zero probability. In this
section, we focus on translations. Assuming our data are in{0, 1}D1×D2 , a translation shifts the
starting place of its feature in each dimension byrnk = (d1, d2). We assume a discrete uniform
prior on shifts:rnk ∼ U{0, . . . ,D1 − 1} × U{0, . . . ,D2 − 1}. Each transformation results in a
new interpretation of the feature,rn(yd). The likelihoodp(xnd = 1|Z,Y,R) is then identical to
Equation 2, substituting the vector of transformed featureinterpretationsrn(yd) for yd.

2.3 Inference by Gibbs sampling

We sample from the posterior distribution on feature assignmentsZ, feature interpretationsY, and
transformationsR given observed propertiesX using Gibbs sampling [11]. The algorithm consists
of iteratively drawing each variable conditioned on the current values of all other variables.

For features withmk > 0 (after removal of the current value ofznk), we drawznk by marginalizing
over transformations. This avoids a bottleneck in sampling, as otherwise we would have to get lucky
in drawing the right feature and transformation. The marginalization can be done directly, with

p(znk|Z−(nk),R−(nk),Y,X) =
∑

rnk

p(znk|Z−(nk),R,Y,X)p(rnk) (3)

where the first term on the right hand side is proportional top(xn|zn,Y,R)p(znk|Z−(nk)) (pro-
vided by the likelihood and the IBP prior respectively, withZ−(nk) being all ofZ exceptznk), and
the second term is uniform over allrnk. If znk = 1, we then samplernk from

p(rnk|znk = 1,Z−(nk),R−(nk),Y,X) ∝ p(xn|zn,Y,R)p(rnk) (4)

where the relevant probabilities are also used in computingEquation 3, and can thus be cached.

We follow Wood et al.’s [10] method for drawing new features (ie. features for which currently
mk = 0). First, we draw an auxilary variableKnew

n , the number of “new” features, from

p(Knew
n |xn,Zn,1:(K+Knew

n
),Y,R) ∝ p(xn|Z

new,Y,Knew
n )P (Knew

n ) (5)
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whereZnew is Z augmented withKnew
n new columns containing ones in rown. From the IBP, we

know thatKnew
n ∼ Poisson(α/N) [4]. To compute the first term on the right hand side, we need

to marginalize over the possible new feature images and their transformations (Y(K+1):(K+Knew
n

)

andRn,(K+1):(K+Knew
n

)). We assume that the first object to take a feature takes it in its canonical
form and thus it is not transformed. Since the first transformation of a feature and its interpretation
in an image are not identifiable, this assumption is valid andnecessary to aid in inference. With
no transformations, drawing the new features in the noisy-OR tIBP model is equivalent to drawing
the new features in the normal noisy-OR IBP model. Thus, we can use the same sampling step for
Knew

n as [10]. LetZnew = Zn,1:(K+Knew
n

). Continuing the previous equation,

p(Knew
n | . . .) ∝ p(Knew

n )
∏

d

p(xnd|Z
new,Y,R,Knew

n ) (6)

=
αKnew

n e−α

Knew
n !

(

1 − (1 − ǫ)(1 − λ)znrn(yd)(1 − pλ)Knew
n

)

(7)

wherern(yd) is the vector of transformed feature interpretations alongobserved dimensiond.

Finally, to complete each Gibbs sweep we resample the feature interpretations (Y) given the state
of the other variables. We sample eachykd independently given the state of the other variables, with

p(ykd|X,Z,R,Y−(kd)) ∝ p(X|Y,Z,R)p(ykd) (8)

wherep(X|Y,Z,R) is the likelihood, given by the noisy-OR function.

2.4 Prediction

To compare the feature representations our model infers to behavioral results, we need to have judge-
ments of the model for new test objects. This is a prediction problem: computing the probability of
a new objectxN+1 given the set ofN observed objectsX. We can express this as

P (xN+1|X) =
∑

Z,Y,R

P (xN+1,Z,Y,R|X) =
∑

Z,Y,R

P (xN+1|Z,Y,R)P (Z,Y,R|X). (9)

The Gibbs sampling algorithm gives us samples fromP (Z,Y,R|X) that can be used to approxi-
mate this sum. However, a further approximation is requiredto computeP (xN+1|Z,Y,R). For
each sweep of Gibbs sampling, we sample a vector of featureszN+1 and corresponding transfor-
mationsrN+1 for a new object from their conditional distribution given the values ofZ, Y, and
R in that sweep, under the constraint that no new features are generated. We use these samples to
approximate the calculation ofP (xN+1|Z,Y,R) by marginalizing overzN+1 andrN+1.

3 Demonstration: Learning Translation Invariant Features

In many situations learners need to form a feature representation of a set of objects, and the features
do not reoccur in the exact same location. A common strategy for dealing with this problem is to
pre-process data to build in the relevant invariances, or simply to tabulate the presence or absence of
features without trying to infer them from the data (e.g., [12]). The tIBP provides a way for a learner
to discover that features are translation invariant, and toinfer them directly from the data.

Fiser and colleagues [6, 12] showed that when two parts of an image always occur together (forming
a “base pair”), people expect the two parts to occur togetheras if they had one feature representing
the pair. In Experiments 1 and 2 of [6], participants viewed 144 scenes, where each scene contained
three of the six base pairs in varied spatial location. Each base pair was two of twelve parts in
a particular spatial arrangment. Afterwards, participants chose which of two images was more
familiar: a base pair (in a never seen before location) and pair of parts that occured together at least
once (but were not a base pair). Participants strongly preferred the base pair. To demonstrate the
ability of tIBP to infer translation invariant features that are made up of complex parts, we trained
the model on the scenes with the same structure as those shownto participants. The only difference
was to lower the dimensionality of the images by recoding each part to be a 3 by 3 pixel image (the
images from [6] were 1200 by 900 pixels). Figure 2 (a) shows the basic parts (grouped into their
base pairs), while 2 (b) shows one scene given to the model. Figure 2 (c) shows the features inferred
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(a) (b) (c)

Figure 2: Learning translation invariant features. (a) Each of the parts used to form base pairs, with
base pairs grouped in rectangles. (b) One example scene. (c)Features inferred by the tIBP model
(one sample from the Gibbs sampler). The tIBP infers the basepairs as features.

by the tIBP model (one sample from the Gibbs sampler after 1000 iterations with a 50 iteration
burn-in), given the 144 scenes. The parameters were initialized toα = 0.8, ǫ = 0.05, λ = 0.99, and
p = 0.4. The model reconstructs the base pairs used to generate the images, and learns that the base
pairs can occur in any location. To compare the model people’s familiarity judgments, we calculated
the model’s predictive probability for each base pair in a new location and for a part in that base pair
with another part that co-occured with it at least once (but not in a base pair). Over all comparisons,
the tIBP model gave higher probability to the image containing the base pair.

4 Experiment 1: One feature or two features transformed?

A new problem arises out of learning features that can transform. Is an image composed of the same
feature multiple times with different instantiations or isit composed with different features that may
or may not be transformed? One way to decide between two possible feature representations for the
object is to pick the features that allow you to encode the object and the other objects it is associated
with. For example, the object from Figure 1 (a) is the first object (from the top left) in the two
sets of objects shown in Figure 3. Figure 3 (a) is theunitizedobject set. All of the objects in this
set can be represented as translations of one feature that istwo vertical bars. Although this object
set can also be described in terms of two features (each of which are vertical bars that can each
translate independently), it is a surprising coincidence that the two vertical bars are always the same
distance apart over all of the objects in the set. Figure 3 (b)is theseparateobject set. This set is best
represented in terms of two features, where each is a vertical bar.

Using different feature representations leads to different predictions about what other objects should
be expected to be in the set. Representing the objects with a single feature containing two vertical
bars predicts new objects that have vertical bars where the two bars are the same distance apart (New
Unitized). These objects are also expected under the feature representation that is two features that
are each vertical bars; however, any object with two vertical bars is expected (New Separate) — not
just those with a particular distance apart. Thus, interpreting objects with different feature repre-
sentations has consequences for how to generalize set membership. In the following experiment,
we test these predictions by asking people after viewing either theunitizedor separateobject sets
to judge how likely theNew Unitizedor New Separateobjects are to be part of the object set they
viewed. We then compare the behavioral results to the features inferred by the tIBP model and the
predictive probability of each of the test objects given each of the object sets.

(a) (b)

Figure 3: Training sets for Experiment 1. (a) Objects made from spatial translations of the unitized
feature. (b) Objects made from spatial translations of two separate features. The number of times
each vertical bar is present is the same in the two object sets.
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Figure 4: Results of Experiment 1. (a) Human judgments. Theunitizedgroup only rated those
images with two vertical bars close together highly. Theseparategroup rate any image with two
vertical bars highly. (b) The predictions by the tIBP model.

4.1 Methods

A total of 40 participants were recruited online and compensated a small amount. Three participants
were removed for failing to complete the task leaving 19 and 18 participants in theseparateand
unitizedconditions respectively. There were two phases to the experiment: training and test. In the
training phase, participants read this cover story (adapted from [13]): “Recently a Mars rover found
a cave with a collection of different images on its walls. A team of scientists believes the images
could have been left by an alien civilization. The scientists are hoping to understand the images so
they can find out about the civilization.” They then looked through the eight images (which were
either theunitizedor separateobject set in a random order) and scrolled down to the next section
once they were ready for the test phase. Once they scrolled down to the next section, they were
informed that there were many more images on the cave wall that the rover had not yet had a chance
to record. Their task for the test phase was to rate how likelyon a scale from 0 to 6 they believed
the rover would see each image as it explored further throughthe cave. There were nine test images
presented in a random order:Seen Both(an image in both training sets),Seen Unit(an image that
only theunitizedgroup saw),Seen Sep(an image only theseparategroup saw),New Unit(an image
valid under the unitized feature set),New Sep(a image valid under separate feature set), and four
other images that acted as controls (the images are under thehorizontal axes of Figure 4).

4.2 Results

Figure 4 (a) shows the average ratings made by participants in each group for the nine test images.
Over the nine test images, theseparategroup rated theSeen Sep(t(35) = 6.40, p < 0.001) andNew
Sep(t(35) = 5.43, p < 0.001) objects higher than theunitizedgroup, but otherwise did not rate any
of the other test images significantly different. As predicted by the above analysis, theunitizedgroup
believed the Mars rover was likely to encounter the two images it observed and theNew Unitimage
(the unitizedfeature in a new horizontal position), but did not think it would encounter the other
objects. Theseparategroup rated any image with two vertical bars highly. This indicates that they
represent the images using two features each containing a single vertical bar varying in horizontal
position. Thus, each group of participants infer a set of features invariant over the set of observed
objects (taking into account the different horizontal position of the features in each object).

Figure 4 (b) shows the predictions made by the tIBP model whengiven each object set. The pre-
dictive probabilities for the test objects were calculatedusing the procedure outlined above (with
the parameter values from Section 3), using 1000 iterationsof Gibbs sampling and a 50 iteration
burn-in. A non-linear monotonic transformation of these probabilities was used for visualization,
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Figure 5: Stimuli for investigating how different types of invariances are learned for different object
classes. (a) Therotation training set. (b) Thesizetraining set. (c) Two new objects for testing the
inferred type of invariance aNew Rotationand aNew Sizeobject.

raising the unnormalized probabilities to the power of 0.05and renormalizing. The Spearman’s rank
order correlation between the model’s predictions and human judgments is 0.85. Qualitatively, the
model’s predictions are good; however, it incorrectly predicts that theseparatecondition should rate
the1 Bar test image highly. Unlike the participants in theseparatecondition, the model does not
infer that each object has two features and so having only onefeature is not a good object. This sug-
gests that while learning the feature representation for a set of objects, people also learn the number
of features each object typically has. Investigating how people infer expectations about the number
of features objects have is an interesting phenomenon that demands further study.

5 Experiment 2: Learning the type of invariance

A natural next step for improving the tIBP would be to make theset of transformationsΦ larger and
thus extend the number of possible invariants that can be learned. Although this may be appropriate
from a machine learning perspective, it is inappropriate for understanding human cognition. Re-
call the Mach square/diamond example in Figure 1 (b). Many shapes are equivalent when rotated;
however, rotational invariance does not hold for all shapes. This example teaches a counterintuitive
moral: The best approach is not to include as many transformations as possible into the model.

Though rotations are not valid transformations for what people commonly consider to be squares,
they are appropriate for many objects. This suggests that people infer the set of allowable transfor-
mations for different classes of objects. Given the three objects in Figure 5 (a) (therotation set) it
seems clear that theNew Rotationobject in Figure 5 (c) belongs in the set, but not theNew Size
object. The reverse holds for the three objects from the leftof Figure 5 (b), thesizeset. To explore
this phenomenon, we first extend the tIBP to infer the appropriate set of transformations by intro-
ducing latent variables for each feature that indicate which transformations it is allowed to use. We
demonstrate this extension to the tIBP predicts theNew Rotationobject when given therotation set
and predicts theNew Sizeobject when given thesizeset — effectively learning the appropriate type
of invariance for a given object class. Finally, we confirm our introspective argument that people
infer the type of invariance appropriate to the observed class of objects.

5.1 Learning invariance type using the tIBP

It is straightforward to modify the tIBP such that the type oftransformations allowed on a feature is
inferred as well. This is done by introducing a hidden variable for each feature that indicate the type
of transformation allowed for that feature. Then, the feature transformation is generated conditioned
on this hidden variable from a probability distribution specific to the transformation type.

The experiment in this section is learning whether or not thefeature defining a set of objects is
either rotation or size invariant. Formally, we model this using a generative process that is the
same as the tIBP, but introduces the latent variabletk which determines the type of transformation
allowed by featurek. If tk = 1, then rotational transformations are drawn fromΦρ (which is the
discrete uniform distribution distribution ranging in multiples of fifteen degrees from zero to 45).
If tk = 0, then size transformations are drawn fromΦσ (which is the discrete uniform distribution

over [3/8, 3/7, 3/5, 5/7, 1, 7/5, 11/7, 5/3, 11/5, 7/3, 11/3]). We assumetk
iid
∼ Bernoulli(π).

The inference algorithm for this extension is the same as forthe tIBP except we need to infer the
values oftk. We drawtk using a Gibbs sampling scheme while marginalizing overr1k, . . . , rnk,

p(tk|X,Y,Z,R−k, t−k) ∝
∑

rnk

p(xn|rnk, tk,Y,Z,R−k, t−k)p(rk|tk)p(tk). (10)
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Figure 6: Results of Experiment 2. (a) Responses of human participants. (b) Model predictions.

Prediction is as above excepttk gives the set of transformations each feature is allowed to take.

5.2 Methods

A total of 40 participants were recruited online and compensated a small amount, with 20 partici-
pants in both training conditions (rotation andsize). The cover story from Experiment 1 was used.
Participants observed the three objects in their training set and then generalize on a scale from 0 to
6 to five test objects:Same Both(the object that is in both training sets),Same Rot(the last object of
therotation set), Same Size(the last object of thesize set), New RotandNew Size.

5.3 Results

Figure 6 (a) shows the average human judgments. As expected,participants in therotationcondition
generalize more to theNew Rotobject than thesizecondition (unpairedt(38) = 4.44, p < 0.001)
and vice versa for theNew Sizeobject (unpairedt(38) = 5.34, p < 0.001). This confirms our hy-
pothesis; people infer the appropriate set of transformations (a subset of all transformations) features
are allowed to use for a class of objects. Figure 6 (b) shows the model predictions with parameters
set toα = 2, ǫ = 0.01, λ = 0.99, p = 0.5, andπ = 0.5 and using the same visualizing technique
as Experiment 1 (withT = 0.005), run for 1000 iterations (with a burn-in of 50 iterations) on the
sets of images (downsampled to 38 by 38 pixels). Qualitatively, the extended tIBP model has nearly
the same pattern of results as the participants in the experiment. The only issue being that it gives
high probability to theSame Sizewhen given therotation set, an artifact from downsampling. The
Spearman’s rank order correlation between the model’s predictions and human judgments is 0.68.
Importantly, the model predicts that only when given therotation setshould participants generalize
to theNew Rotobject and only when given thesize setshould they generalize to theNew Sizeobject.

6 Conclusions and Future Directions

In this paper, we presented a solution to how people infer feature representations that are invariant
over transformations and in two behavioral experiments confirmed two predictions of a new model
of human unsupervised feature learning. In addition to these contributions, we proposed a first
sketch of a new computational theory of shape representation — the features representing an object
are transformed relative to the object and the set of transformations a feature is allowed to undergo
depends on the object’s context. In the future, we would liketo pursue this theory further, expanding
the account of learning the types of transformations and exploring how the transformations between
features in an object interact (we should expect some interaction due to real world constraints on
the transformations, e.g., prospective geometry). Finally, we hope to include other facets of visual
perception into our model, like a perceptually realistic prior on feature instantiations and features
relations (e.g., the horizontal bar is always ON TOP OF the vertical bar).
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