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Abstract

Estimating the parameters of sparse multinomial distributions is
an important component of many statistical learning tasks. Recent
approaches have used uncertainty over the vocabulary of symbols
in a multinomial distribution as a means of accounting for sparsity.
We present a Bayesian approach that allows weak prior knowledge,
in the form of a small set of approximate candidate vocabularies,
to be used to dramatically improve the resulting estimates. We
demonstrate these improvements in applications to text compres-
sion and estimating distributions over words in newsgroup data.

1 Introduction

Sparse multinomial distributions arise in many statistical domains, including nat-
ural language processing and graphical models. Consequently, a number of ap-
proaches to parameter estimation for sparse multinomial distributions have been
suggested [3]. These approaches tend to be domain-independent: they make little
use of prior knowledge about a specific domain. In many domains where multino-
mial distributions are estimated there is often at least weak prior knowledge about
the potential structure of distributions, such as a set of hypotheses about restricted
vocabularies from which the symbols might be generated. Such knowledge can be
solicited from experts or obtained from unlabeled data. We present a method for
Bayesian parameter estimation in sparse discrete domains that exploits this weak
form of prior knowledge to improve estimates over knowledge-free approaches.

1.1 Bayesian parameter estimation for multinomial distributions

Following the presentation in [4], we consider a language ¥ containing L dis-
tinct symbols. A multinomial distribution is specified by a parameter vector
0 = (01,...,01), where 6; is the probability of an observation being symbol 4.

Consequently, we have the constraints that Zle 0;=1and 6; > 0,i =1,...,L.
The task of multinomial estimation is to take a data set D and produce a vector
that results in a good approximation to the distribution that produced D. In this
case, D consists of N independent observations z!,...z" drawn from the distribu-
tion to be estimated, which can be summarized by the statistics IV; specifying the
number of times the ith symbol occurs in the data. D also determines the set X.°



of symbols that occur in the data.

Stated in this way, multinomial estimation involves predicting the next observation
based on the data. Specifically, we wish to calculate P(z"*!|D). The Bayesian
estimate for this probability is given by

PL(z"|D) = / P(zN*19) P(6|D)d8

where P(zVN11|6) follows from the multinomial distribution corresponding to 6. The
posterior probability P(8|D) can be obtained via Bayes rule

P(6|D) x P(D|§)P H AL

where P(#) is the prior probability of a given 6.

Laplace used this method with a uniform prior over 8 to give the famous “law of
succession” [6]. A more general approach is to assume a Dirichlet prior over 6,
which is conjugate to the multinomial distribution and gives

N; + o
N+Z =145

where the a; are the hyperparameters of the Dirichlet distribution. Different esti-
mates are obtained for different choices of the «;, with most approaches making the
simplifying assumption that a; = « for all i. Laplace’s law results from a = 1. The
case with a = 0.5 is the Jeffreys-Perks law or Expected Likelihood Estimation [2]
[5] [9], while using arbitrary « is Lidstone’s law [7].

P(XN*! =4|D) = (1)

1.2 Estimating sparse multinomial distributions

Several authors have extended the Bayesian approach to sparse multinomial distri-

butions, in which only a restricted vocabulary of symbols are used, by maintaining

uncertainty over these vocabularies. In [10], Ristad uses assumptions about the

probability of strings based upon different vocabularies to give the estimate
(N;+1)/(N+L) if kO=1L

Pr(XN*l =iD)={ (N;+1)(N+1-k°)/(N?>+ N +2k°) if k< LAN; >0
KO(K° +1)/(L — k°)(N? + N + 2k0) otherwise

where k% = |X] is the size of the smallest vocabulary consistent with the data.

A different approach is taken by Friedman and Singer in [4], who point out that
Ristad’s method is a special case of their framework. Friedman and Singer consider
the vocabulary V C ¥ to be a random variable, allowing them to write

P(XNt' =i|D) =" P(XN*! =i|V,D)P(V|D) (2)
v
where P(XN*+1 = |V, D) results from a Dirichlet prior over the symbols in V,

Nita  ifjcV

P(XNtl =4|V,D)={ N+[V[e 3
( iV, D) 0 otherwise (3)

and by Bayes’ rule and the properties of Dirichlet priors
P(VID) o P(D|V)P(V)

T'(|V]a I'(Ni+a
B { riniTtay ieso SR P(V) 20 CV (4)
0 otherwise



Friedman and Singer assume a hierarchical prior over V', such that all vocabularies
of cardinality k are given equal probability, namely P(S = k)/(£), where P(S = k)
is the probability that the size of the vocabulary (|V|) is k. It follows that if i € X°,

P(XN*1 = i|D) = 3, 42 P(S = k|D). If i & %0, it is necessary to estimate the

proportion of V' that contain 4 for a given k. The simplified result is
Nita 0(D, L) if i € X0
N+1 _ — ko« >
Pr(X =iD) = { —w(1—=C(D,L)) otherwise (5)

where . .

N+k

C(D, L) = 2 heko ﬁmk
ZII;’:kO Mg

with my = P(S = k) toy; - rivesay-

2 Making use of weak prior knowledge

Friedman and Singer assume a prior that gives equal probability to all vocabularies
of a given cardinality. However, many real-world tasks provide limited knowledge
about the structure of distributions that we can build into our methods for param-
eter estimation. In the context of sparse multinomial estimation, one instance of
such knowledge the importance of specific vocabularies. For example, in predicting
the next character in a file, our predictions could be facilitated by considering the
fact that most files either use a vocabulary consisting of ASCII printing characters
(such as text files), or all possible characters (such as object files). This kind of
structural knowledge about a domain is typically easier to solicit from experts than
accurate distributional information, and forms a valuable informational resource.

If we have this kind of prior knowledge, we can restrict our attention to a subset
of the 2% possible vocabularies. In particular, we can specify a set of vocabularies
VY which we consider as hypotheses for the vocabulary used in producing D, where
the elements of V are specified by our knowledge of the domain. This stands as
a compromise between Friedman and Singer’s approach, in which V consists of
all vocabularies, and traditional Bayesian parameter estimation as represented by
Equation 1, in which V consists of only the vocabulary containing all words. To
do this, we explicitly evaluate the sum given in Equation 2, where the sum over V'
includes all V € V. This sum remains tractable when V is a small subset of the
possible vocabularies, and the efficiency is aided by the fact that P(D|V) shares
common terms across all V' which can cancel in normalization.

The intuition behind this approach is that it attempts to classify the target distribu-
tion as using one of a known set of vocabularies, where the vocabularies are obtained
either from experts or from unlabeled data. Applying standard Bayesian multino-
mial estimation within this vocabulary gives enough flexibility for the method to
capture a range of distributions, while making use of our weak prior knowledge.

2.1 An illustration: Text compression

Text compression is an effective test of methods for multinomial estimation. Adap-
tive coding can be performed by specifying a method for calculating a distribution
over the probability of the next byte in a file based upon the preceding bytes [1].
The extent to which the file is compressed depends upon the quality of these pre-
dictions. To illustrate the utility of including prior knowledge, we follow Ristad in
using the Calgary text compression corpus [1]. This corpus consists of 19 files of



Table 1: Text compression lengths (in bytes) on the Calgary corpus

file size k° NH(N;/N)| P Pr Pr P. Py
bib 111261 81 72330 | 78 89 92 269 174
bookl | 768771 82 435043 | 219 105 116 352 219
book2 | 610856 96 365952 | 94 115 124 329 212
geo 102400 256 72274 | 161 162 165 165 161
news 377109 98 244633 | 89 113 116 304 201
obj1 21504 256 15989 | 126 127 129 129 126
obj2 246814 256 193144 | 182 184 190 189 182
paperl 53161 95 33113 71 94 100 236 156
paper2 | 82199 91 47280 | 75 94 105 259 167
paper3 | 46526 84 27132 | 70 8 92 238 154
paperd | 13286 80 7806 | 58 72 79 190 126
paper5 | 11954 91 7376 | 57 79 83 181 122
paper6 | 38105 93 2381 | 68 90 95 223 149
pic 513216 159 77636 | 205 162 216 323 205
proge 39611 92 25743 | 68 89 91 222 150
progl 71646 87 42720 | 74 91 97 253 164
progp 49379 89 30052 | 71 89 94 236 155
trans 93695 99 64800 | 169 101 105 252 169

several different types, each using some subset of 256 possible characters (L = 256).
The files include BibTEXsource (bib), formatted English text (book*, paper*), ge-
ological data (geo), newsgroup articles (news), object files (obj*), a bit-mapped
picture (pic), programs in three different languages (prog*) and a terminal tran-
script (trans). The task was to estimate the distribution from which characters in
the file were drawn based upon the first NV characters and thus predict the N + 1st
character. Performance was measured in terms of the length of the resulting file,
where the contribution of the N + 1st character to the length is log, P(z™V*1|D).
The results are expressed as the number of bytes required to encode the file relative
to the empirical entropy NH(N;/N) as assessed by Ristad [10].

Results are shown in Table 1. Py is the restricted vocabulary model outlined above,
with V consisting of just two hypotheses: one corresponding to binary files, contain-
ing all 256 characters, and one consisting of a 107 character vocabulary representing
formatted English. The latter vocabulary was estimated from 5MB of English text,
C code, BibTgXsource, and newsgroup data from outside the Calgary corpus. Pg
is Friedman and Singer’s method. For both of these approaches, a was set to 0.5,
to allow direct comparison to the Jeffreys-Perks law, P;. Pg and Pp are Ristad’s
and Laplace’s laws respectively. Py outperformed the other methods on all files
based upon English text, bar book1, and all files using all 256 symbols®. The high
performance followed from rapid classification of these files as using the appropriate
vocabulary in V. When the vocabulary included all symbols Py performed as Py,
which gave the best predictions for these files.

LA number of excellent techniques for text compression exist that outperform all of
those presented here. We have not included these techniques for comparison because our
interest is in using text compression as a means of assessing estimation procedures, rather
than as an end in itself. We thus consider only methods for multinomial estimation as our
comparison group.



2.2 Maintaining uncertainty in vocabularies

The results for book1 illustrate a weakness of the approach outlined above. The file
length for Py is higher than those for Pr and Pg, despite the fact that the file uses a
text-based vocabulary. This file contains two characters that were not encountered
in the data used to construct V. These characters caused Py to default to the
unrestricted vocabulary of all 256 characters. From that point Py corresponded to
Py, which gave poor results on this file.

This behavior results from the assumption that the candidate vocabularies in V are
completely accurate. Since in many cases the knowledge that informs the vocabu-
laries in ¥V may be imperfect, it is desirable to allow for uncertainty in vocabularies.
This uncertainty will be reflected in the fact that symbols outside V' are expected
to occur with a vocabulary-specific probability ey,

A= L =VDev)gosom i€V

P(XN*! =4|V,D) =
( iV, D) €y otherwise

where Ny = ., N;. It follows that

P(D|V) = (1= (L= |[V])ey)Vey T(Ny + |[V]a) iegm, I'(a)

which replaces Equations 3-4 in specifying Py .

When V is determined by the judgments of domain experts, ey is the probability
that an unmentioned word actually belongs to a particular vocabulary. While it
may not be the most efficient use of such data, the V' € V can also be estimated from
some form of unlabeled data. In this case, Friedman and Singer’s approach provides
a means of setting ey . Friedman and Singer explicitly calculate the probability that
an unseen word is in V based upon a dataset: from the second condition of Equation
5, we find that we should set ey = L+‘V|(1 —C(D,L)). We use this method below.

3 Bayesian parameter estimation in natural language

Statistical natural language processing often uses sparse multinomial distributions
over large vocabularies of words. In different contexts, different vocabularies will be
used. By specifying a basis set of vocabularies, we can perform parameter estimation
by classifying distributions according to their vocabulary. This idea was examined
using data from 20 different Usenet newsgroups. This dataset is commonly used
in testing text classification algorithms (eg. [8]). Ten newsgroups were used to
estimate a set of vocabularies V with corresponding ey. These vocabularies were
used in estimating multinomial distributions on these newsgroups and ten others.

The dataset was 20news-18827, which consists of the 20newsgroups data with
headers and duplicates removed, and was preprocessed to remove all punctuation,
capitalization, and distinct numbers. The articles in each of the 20 newsgroups were
then divided into three sets. The first 500 articles from ten newsgroups were used to
estimate the candidate vocabularies V and uncertainty parameters ey. Articles 501-
700 for all 20 newsgroups were used as training data for multinomial estimation.
Articles 701-900 for all 20 newgroups were used as testing data. Following [8],
a dictionary was built up by running over the 13,000 articles resulting from this
division, and all words that occurred only once were mapped to an “unknown”
word. The resulting dictionary contained L = 54309 words.

As before, the restricted vocabulary method (Py), Friedman and Singer’s method
(Pr), and Ristad’s (Pg), Laplace’s (Pr) and the Jeffreys-Perks (P;) laws were ap-
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Figure 1: Cross-entropy of predictions on newsgroup data as a function of the
logarithm of the number of words. The abscissa is at the empirical entropy of the
test distribution. The top ten panels (talk.politics.mideast and those to its
right) are for the newsgroups with unknown vocabularies. The bottom ten are for
those that contributed vocabularies to V, trained and tested on novel data. P;, and
Pj are both indicated with dotted lines, but P; always performs better than Py, .
The box on talk.politics.mideast indicates the point at which Py defaults to
the full vocabulary, as the number of unseen words makes this vocabulary more
likely. At this point, the line for Py joins the line for P;, since both methods give
the same estimates of the distribution.

plied to the task. Both Py and Pr used a = 0.5 to facilitate comparison with
Pj. V featured one vocabulary that contained all words in the dictionary, and
ten vocabularies each corresponding to the words used in the first 500 articles of
one of the newsgroups designated for this purpose. ey was estimated as outlined
above. Testing for each newsgroup consisted of taking words from the 200 articles
assigned for training purposes, estimating a distribution using each method, and
then computing the cross-entropy between that distributipn and an empirjcal esti-
mate of the true distribution. The cross-entropy is H(Q; P) = ), Q;log, P;, where

Q@ is the true distribution and P is the distribution produced by the estimation
method. @ was given by the maximum likelihood estimate formed from the word
frequencies in all 200 articles assigned for testing purposes. The testing procedure
was conducted with just 100 words, and then in increments of 450 up to a total
of 10000 words. Long-run performance was examined on talk.politics.mideast
and talk.politics.misc, each trained with 50000 words.

The results are shown in Figure 1. As expected, Py consistently outperformed
the other methods on the newsgroups that contributed to V. However, perfor-
mance on novel newsgroups was also greatly improved. As can be seen in Figure
2, the novel newsgroups were classified to appropriate vocabularies — for example
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Figure 2: Classification of newsgroup vocabularies. The lines illustrate the vocabu-
lary which had maximum posterior probability for each of the ten test newsgroups
after exposure to differing numbers of words. The vocabularies in V are listed along
the left hand side of the axis, and the lines are identified with newsgroups by the
labels on the right hand side. Lines are offset to facilitate identification.

talk.religion.misc had the highest posterior probability for alt.atheism and
soc.religion.christian, while rec.autos had highest posterior probability for
rec.motorcycles. The proportion of word types occurring in the test data but
not the vocabulary to which the novel newsgroups were classified ranged between
30.5% and 66.2%, with a mean of 42.2%. This illustrates that even approximate
knowledge can facilitate predictions: the basis set of vocabularies allowed the high
frequency words in the data to be modelled effectively, without excess mass being
attributed to the low frequency novel word tokens.

Long-run performance on talk.politics.mideast illustrates the same defaulting
behavior that was shown for text classification: when the data become more prob-
able under the vocabulary containing all words than under a restricted vocabulary
the method defaults to the Jeffreys-Perks law. This guarantees that the method will
tend to perform no worse than P; when unseen words are encountered in sufficient
proportions. This is desirable, since P; gives good estimates once N becomes large.

4 Discussion

Bayesian approaches to parameter estimation for sparse multinomial distributions
have employed the notion of a restricted vocabulary from which symbols are pro-
duced. In many domains where such distributions are estimated, there is often at



least limited knowledge about the structure of these vocabularies. By considering
just the vocabularies suggested by such knowledge, together with some uncertainty
concerning those vocabularies, we can achieve very good estimates of distributions in
these domains. We have presented a Bayesian approach that employs limited prior
knowledge, and shown that it outperforms a range of approaches to multinomial
estimation for both text compression and a task involving natural language.

While our applications in this paper estimated approximate vocabularies from data,
the real promise of this approach lies with domain knowledge solicited from experts.
Experts are typically better at providing qualitative structural information than
quantitative distributional information, and our approach provides a way of using
this information in parameter estimation. For example, in the context of parame-
ter estimation for graphical models to be used in medical diagnosis, distinguishing
classes of symptoms might be informative in determining the parameters governing
their relationship to diseases. This form of knowledge is naturally translated into
a set of vocabularies to be considered for each such distribution. More complex
applications to natural language may also be possible, such as using syntactic in-
formation in estimating probabilities for n-gram models. The approach we have
presented in this paper provides a simple way to allow this kind of limited domain
knowledge to be useful in Bayesian parameter estimation.
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