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Abstract

We introduce a Bayesian framework for modeling individual differences, in which subjects are assumed to belong to one of a

potentially infinite number of groups. In this model, the groups observed in any particular data set are not viewed as a fixed set that fully

explains the variation between individuals, but rather as representatives of a latent, arbitrarily rich structure. As more people are seen,

and more details about the individual differences are revealed, the number of inferred groups is allowed to grow. We use the Dirichlet

process—a distribution widely used in nonparametric Bayesian statistics—to define a prior for the model, allowing us to learn flexible

parameter distributions without overfitting the data, or requiring the complex computations typically required for determining the

dimensionality of a model. As an initial demonstration of the approach, we present three applications that analyze the individual

differences in category learning, choice of publication outlets, and web-browsing behavior.

r 2005 Elsevier Inc. All rights reserved.
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‘‘I am surprised that the author has used this data set. In
my lab, when we collect data with such large individual
differences, we refer to the data as ‘‘junk’’. We then re-
design our stimuli and/or experimental procedures, and
run a new experiment. The junk data never appear in
publications’’

—An anonymous reviewer in 2005, commenting on
research that sought to model individual differences in
cognition.
1. Introduction

Suppose we asked 100 people which number was the
most unlucky. Of those people, 50 said ‘13’, 40 said ‘4’, and
10 said ‘87’. This variation is unlikely to be due to noise in
the cognitive process by which people make unluckiness
judgments: if we replicated the experiment with the same
people, the same 50 people would probably say 13 again. It
e front matter r 2005 Elsevier Inc. All rights reserved.
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seems much more likely that most of the observed variation
arises from genuine differences in what those people
believe. A complete explanation of people’s answers would
have to account for this variation.
Often, cognitive modeling ignores individual variation,

because it uses data that have been averaged or aggregated
across subjects. The potential benefit of averaging data is
that, if the performance of subjects really is the same except
for noise, the averaging process will tend to remove the
effects of the noise, and the resultant data will more
accurately reflect the underlying psychological phenomen-
on. When the performance of subjects has genuine
differences, however, it is well known (e.g., Ashby,
Maddox, & Lee, 1994; Estes, 1956; Myung, Kim, & Pitt,
2000) that averaging produces data that do not accurately
represent the behavior of individuals, and provide a
misleading basis for modeling. In our unlucky numbers
experiment, the average unlucky number is approximately
17, which was not given as an answer by any participant.
More fundamentally, the practice of averaging data
restricts the focus of cognitive modeling to issues of how
people are the same. While modeling invariants is
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fundamental, it is also important to ask how people are
different. If experimental data reveal individual differences
in cognitive processes, we should seek to model this
variation rather than ignore it. From the unlucky number
data, we might discover that, while 50 people were drawing
on a tradition (originally European) in which 13 is
considered unlucky, 40 were drawing on a corresponding
Chinese tradition in which 4 is considered unlucky.
Moreover, the remaining 10 participants might turn out
to be Australian cricket fans (87 is considered an unlucky
number for Australian batsmen).

Cognitive modeling that attempts to accommodate
individual differences usually assumes that each subject
behaves in accordance with a unique parameterization of a
model, and so evaluation is undertaken against the data
from each subject independently (e.g., Ashby et al., 1994;
Nosofsky, 1986; Wixted & Ebbesen, 1997). Although this
avoids the problem of corrupting the underlying pattern of
the data, it also foregoes the potential benefits of averaging,
and guarantees that modeling is affected by all of the noise
in the data. In our hypothetical unlucky numbers experi-
ment, it seems unlikely to be a coincidence that fully half of
the participants said exactly the same thing. A more
parsimonious account is that the 50 people who said 13 are
in some way related to one another, but are not related to
the 40 people who said 4 or the 10 people who said 87.
Moreover, suppose we discovered an Australian cricket fan
with a bad memory, and this person accidentally says 86.
Individual subject analysis does not allow us to ‘‘share
statistical strength’’ between the cricket fans, in the sense
that having seen many 87 answers could be used to correct
the ‘noisy’ 86 answer. In general, modeling everybody
independently increases the risk of overfitting, and hence
reduces the ability to make accurate predictions or to
generalize to new contexts.
Parameter space for the
cognitive model

Space of observable data
for the experiment

(a)

�

Fig. 1. Standard modeling approaches for data from many subjects, involvin

independently (panel b). The data are plotted in the lower data space, with dif

parameter distributions inferred under each modeling approach.
Notwithstanding the ongoing debate about the relative
merits of fitting aggregated versus individual data (e.g.,
Maddox & Estes, 2005), the previous discussion suggests
that both viewpoints are unsatisfying. To provide a visual
illustration of this point, consider the hypothetical data
shown in Fig. 1. The figure depicts the outcome of a simple
experiment in which we collect noisy data from three
participants. The three participants’ data are indicated with
crosses, circles, and triangles. The crosses form a roughly
elliptical shape from the lower left to the upper right of the
data space, whereas the circles and triangles form ellipses
that slant from the upper left to the lower right. On the left-
hand side (panel a), we aggregate across participants, and
estimate a single parameter value y that produces a
distribution that is roughly circular, indicated by the
contour plot. The aggregate looks nothing like the
individuals. On the right-hand side (panel b), we estimate
a parameter value independently for each participant. The
inferred parameter values y1, y2 and y3 and their associated
contour plots now do capture the basic aspects of
everyone’s performance. However, this accuracy has come
at the cost of losing sight of the similarity between two of
the participants. Using the individual fitting approach, this
relationship y2 � y3 is not represented. Even if we observed
a large number of people with very similar parameter
values, we could make no formal inference about the
relationship between them. Ultimately, neither the aggre-
gate nor the individual view captures the pattern of
similarities and differences apparent in the data. Aggre-
gated models can learn similarities and individual models
can learn differences, but modeling individual variation in
cognition requires being able to learn both simultaneously.
Because of these difficulties, a number of authors have

considered more sophisticated ways of expressing indivi-
dual differences within models of cognitive processes (e.g.,
Parameter space for the
cognitive model

Space of observable data
for the experiment

(b)
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g the aggregation of data (panel a), and the modeling of each individual

ferent symbols for each participant. The upper parameter space shows the
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Lee & Webb, in press; Peruggia, Van Zandt, & Chen, 2002;
Rouder, Sun, Speckman, Lu, & Zhou, 2003; Steyvers,
Tenenbaum, Wagenmakers, & Blum, 2003; Webb & Lee,
2004). The central innovation is to provide an explicit
model for the kinds of individual differences that might
appear in the data, in much the same way as established
methods in psychometric models like Item Response
Theory (e.g., Hoskens & de Boeck, 2001; Junker & Sijtsma,
2001; Lord, 1980). The general approach, illustrated
schematically in Fig. 2, is to supplement the cognitive
model that describes variation within a single participant’s
data with an individual differences model that describes
how cognitive parameters can vary across people. Using
sufficiently flexible individual differences models, it is
possible to learn both the similarities and differences
between people.

Model-based approaches to individual differences vary
in terms of the class of distributions that are allowed to
describe variation in parameter values, reflecting different
assumptions about which aspects of individual differences
are the most important to capture. In this paper we
introduce a new model-based framework for understand-
ing individual differences. Informed by recent insights in
statistics and machine learning (e.g., Escobar & West,
1995; Neal, 2000), our infinite groups model makes it
possible to divide subjects who behave similarly into
groups, without assuming an upper bound on the number
of groups. This model is sufficiently flexible to capture the
heterogeneous structure produced by different subjects
pursuing different strategies, allows the number of groups
in the observed sample to grow naturally as more data
appear, and avoids the complex computations that are
often required when one chooses an individual differences
model by standard model selection methods. We illustrate
Parameter space for the
cognitive model

Space of observable data
for the experiment
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individual differences model
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Fig. 2. The model-based view of individual differences. The data are

plotted in the lower data space, with different symbols for each

participant. The middle parameter space shows the parameter values

inferred for each participant based on their data and an individual

differences model that describes how these parameters can vary between

people. The upper parameter space shows the inferred parameter values

for this individual differences model.
the infinite groups model by considering simple multi-
nomial models that predict the frequencies of responses
across a set of categories. However, the idea generalizes to
more general classes of probabilistic models.
The structure of the paper is as follows: we begin with an

overview of existing frameworks for modeling individual
differences, and their interpretations as Bayesian hierarch-
ical models. We then introduce the infinite groups
approach as a principled way to address some of the
problems associated with these frameworks, including
model selection problems. Next, we provide a brief tutorial
on the Dirichlet process, which forms the basis of our
approach, and discuss how model selection proceeds when
working with the infinite groups framework. We then
derive the infinite groups model for discrete data and
present illustrative simulation studies. Finally, we present
three applications that analyze the individual differences in
categorization performance, choice of publication outlets,
and web-browsing behavior.

2. Hierarchical Bayesian models for individual differences

Two dominant model-based approaches have emerged in
the literature on individual differences. In a stochastic

parameters model (e.g., Peruggia et al., 2002; Rouder et al.,
2003), every participant is assumed to have a unique
parameter value y that is sampled from a parametric
distribution, as illustrated in Fig. 3a. The intuition behind
the approach is that, while every person is unique, the
variation between people is not arbitrary, and can be
described by a distribution over the parameters. These
distributions are generally smooth and unimodal, reflecting
a general tendency at the mode, and a noise model
describing the variations that exist across individuals’
parameters. In contrast, the idea that underlies the groups

model is that there exist a number of distinct types of
qualitatively different performance. Accordingly, this
approach assumes that people fall into one of a number
of fundamentally distinct groups. Within a group, people
are assumed to behave in the same way, but the groups
themselves can vary in all kinds of ways. Under this
approach to individual differences modeling (e.g., Lee &
Webb, in press; Steyvers et al., 2003; Webb & Lee, 2004),
the goal is to partition subjects into a number of groups
and associate each group with a parameterization y, as
illustrated in Fig. 3b.
In order to understand the assumptions that underlie

these two frameworks, it is helpful to view them as
hierarchical Bayesian models (e.g., Lindley & Smith, 1972).
Suppose we have data from an experiment that involves n

participants. If the ith individual participant provides mi

observations, we can denote these observations by the
vector xi ¼ ðxi1; . . . ;ximi

Þ. By specifying a cognitive model,
we assume that these data can be described as i.i.d. samples
from the distribution xij �F ð� j yiÞ. Additionally, by speci-
fying an individual differences model, we assume that there
is a distribution yi�Gð� j/Þ that we can use to describe the
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Fig. 3. Parameter distributions associated with stochastic parameters approach to individual differences (panel a), the original groups approach (panel b),

and the infinite groups approach (panel c). The continuous measure shown in panel a is a probability density function (pdf) while the discrete measures in

panels b and c are probability mass functions (pmf).
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parameter values h ¼ ðy1; . . . ; ynÞ for each of the partici-
pants. Since we now have two distinct levels at which we
wish to construct models, we can write a model of this form
as the two-level hierarchical model

xij j yi�F ð� j yiÞ,

yi j/�Gð� j/Þ. ð1Þ

In this expression / denotes the parameters used to
describe the individual differences model Gð� j/Þ. Letting
x ¼ ðx1; . . . ;xnÞ refer to the complete data set, we can
write the likelihood function for this hierarchical Bayesian
model as

pðx j/Þ ¼
Y

i

pðxi j/Þ

¼
Y

i

Z Y
j

F ðxij j yiÞ

 !
Gðyi j/Þ dyi. ð2Þ

To apply Bayesian inference to this model, we also need to
define a prior on /. We will assume that /�pð�Þ for some
appropriate distribution pð�Þ. Statistical inference in this
model is achieved by finding pðh;/ jxÞ, the joint posterior
distribution over parameter values and individual differ-
ence models. However, we are often only interested in some
aspects of this joint posterior, so only some parts are
reported. Two cases of particular interest are,
(1)
 Posterior over parameters for the cognitive model: One
role of Gð� j/Þ is to induce dependencies between the
parameters yi. In some contexts this is all that the
researcher requires, so it is natural in these situations to
consider the marginal distribution pðh jxÞ. The idea in
this case is that we would use the dependencies induced
via our individual differences model to produce better
parameter estimates.
(2)
 Posterior over the parameters for the individual differ-

ences model: A second role for Gð� j/Þ is to provide a
theoretical account of the variation across the para-
meters yi. In those contexts, the researcher may wish to
report the marginal distribution pð/ jxÞ. The idea in
this case is to learn the structure of individual variation
from the data.
In this paper we are interested more in the second case than
the first, and it is necessary to distinguish between the two.
This is particularly important since stochastic parameter
models are generally motivated by the first case, while
group models are often applied in the second. This
difference in focus is reflected in the fact that, while both
stochastic parameter models and group models can be
viewed as hierarchical models, they differ in the form of the
distribution Gð� j/Þ that describes individual variation. In
the stochastic parameters model, Gð� j/Þ is usually a
tractable distribution such as a Gaussian, with / corre-
sponding to the parameters of that distribution, as in
Fig. 3a. In contrast, if we have a model with k groups, the
individual differences model Gð� j/Þ is a weighted collec-
tion of k point masses, as depicted in Fig. 3b. That is,

Gð� jw; hÞ ¼
Xk

z¼1

wz dð� j yzÞ, (3)

where dð� j yzÞ denotes a point mass distribution located at
yz and where

Pk
z¼1 wz ¼ 1. In the groups model, / ¼ ðw; hÞ.

It is important to notice that in this expression, h refers to
the locations of the k spikes that make up the distribution
Gð� jw; hÞ and are thus parameters of the individual
differences model. The parameter values for the individual
subjects are then sampled from this distribution, and are all
equal to one of these k values. Notationally, we will
distinguish between these two uses through the subscripts:
yi will denote the parameters for the ith participant, while
yz will denote parameter for group z. If the subscript is
ambiguous, we will make it clear in each context.
The hierarchical Bayesian model perspective reveals

some of the strengths and weaknesses of the two
approaches. Assuming that individual parameters yi follow
a simple parametric distribution, as in the stochastic
parameters model, simplifies the problem of learning an
individual differences model from data, but places strong
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constraints on the kind of variation that can manifest
across subjects. A particularly severe problem arises when
we specify a unimodal distribution to capture individual
differences that are inherently multimodal, perhaps arising
from different interpretations of a task. In this case the
model cannot capture the most important aspect of the
variation between people. Unimodal distributions natu-
rally suggest an interpretation in terms of variation away
from a single prototypical parameter value at the mode,
which is misleading in many situations. To return to the
unlucky numbers experiment, we might end up estimating
a distribution with a mean of about 17, and a large enough
variance to capture the performance of the individual
subjects. While this account may provide reasonable
estimates of the individual parameters (case 1), it is
unsatisfactory as an explanation of these parameters (case
2). We would prefer to recognize that the data here have
three distinct modes, located at 4, 13, and 87.

Unlike the stochastic parameters approach, the para-
meter distributions allowed by group models can naturally
account for multimodality in individual differences. By
postulating two groups, for instance, we arrive at a
bimodal distribution. While this is desirable, given our
goal of learning group structure from data, it introduces
the problem of how many groups we should include in our
individual differences model. In finite group models, this is
viewed as a model selection problem. The fixed number of
groups k is taken to define a family of individual
differences distributions Mk, and we are required to
determine which of these families is best for our data. As
a result, model selection issues are central to the applica-
tion of group models to psychological data, and often
make statistical inference very difficult computationally. In
this paper we explore an infinite groups models, which
retains the flexibility of the finite groups model but allows
straightforward inference. Questions of model selection
will still arise, but in a different and more theoretically
satisfying fashion.

3. The infinite groups model

Although the infinite groups model has implications for
the model selection problem, it is motivated by a more
psychological concern with finite group models. The
statistical model described in Eq. (3) assumes that k is a
fixed value, independent of sample size. Such a model
requires, rather implausibly, that future subjects will
belong to one of the same set of k groups that were
observed previously. No provision is made in this model
for the idea that, should more data be observed, more
groups could be observed. In contrast, we start with the
assumption that there are an infinite number of latent
groups, only some number of which are observed in any
finite sample. The consequence is that k is now variable,
and can grow with the data.

To build the infinite groups model, we adopt a
distribution on individual parameters h that is more
flexible than the parametric distribution assumed by the
stochastic parameters model, but still allows efficient
inference. We assume that subjects are drawn from an
infinite number of groups, taking Gð� j/Þ to be a weighted
combination of an infinite number of point masses, as in
Fig. 3c. That is, the individual differences model is assumed
to be of the form

Gð� jw; hÞ ¼
X1
z¼1

wz dð� j yzÞ. (4)

Once again, dð� j yzÞ denotes a point mass distribution
located at yz, and since the wz values denote mixture
weights, they must sum to 1. While we assume that the
number of groups is unbounded, any finite set of subjects
will contain representatives from a finite subset of these
groups. This model is psychologically plausible: people can
vary in any number of ways, only some of which will be
observed in a finite sample. With infinitely many groups,
there is always the possibility that a new subject can display
behavior that has never been seen before.

3.1. Finite-dimensional priors

In order to apply Bayesian inference in the hierarchical
model defined by Eqs. (1) and (4), we need to define a prior
pð�Þ over the possible individual differences models Gð�Þ. A
specific individual differences model is defined by the
countably infinite number of elements of w and h in Eq. (4),
where wz denotes the probability that Gð�Þ assigns to the zth
point mass, and yz denotes the location of that point mass.
In other words, we need a prior over the infinite-
dimensional space W�Y that covers the possible values
for the parameter vectors w 2W and h 2 Y. To see how we
might place a sensible prior on this infinite-dimensional
space, it is helpful to consider how we might proceed in the
finite case when Gð�Þ consists of only k point masses, and
then take the limit as k!1. This approach is a standard
way of eliciting infinite-dimensional priors (e.g., Green &
Richardson, 2001; Griffiths & Ghahramani, 2005; Neal,
2000; Rasmussen, 2000). Note that this procedure does not
explicitly derive the prior distribution itself. Rather, it
provides a principled motivation for a particular choice of
prior.
In a finite groups model with k groups (i.e., Eq. (3)), a

standard prior is

yz�G0ð�Þ,

w j a; k�Dirichletð� j fÞ. ð5Þ

In this prior, each of the k location parameters yz is
sampled independently from the base distribution G0ð�Þ.
This base distribution provides a prior over the kinds of
parameter values that are likely to capture human
performance in a particular task. Choosing the base
distribution is no different to setting a prior in any other
Bayesian context, and so this prior should be chosen in the
usual way. That said, there are differing views as to what
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ought to be the ‘usual way’ (e.g., de Finetti, 1974;
DeGroot, 1970; Jaynes, 2003; Kass & Wasserman, 1996),
but it is outside the scope of this paper to discuss this
debate between subjective and objective views of Bayesian
inference. Whatever approach is adopted, the base
distribution G0ð�Þ is not affected when we make the
transition from finite models to infinite models.

For our purposes, the relevant part of this prior is the
distribution over the weights. Placing a prior over the
weights is made difficult by the constraint that they need to
sum to 1. Typically, in the finite case, we would use a k-
dimensional Dirichlet distribution as a prior over these
weights. The general form for a k-dimensional Dirichlet
with parameters f ¼ ðz1; . . . ; zkÞ is given by

pðw j fÞ ¼
1

ZðfÞ

Yk

z¼1

wzz�1
z

 !
IðwÞ, (6)

where IðwÞ ¼ 1 if the weights w sum to 1, and IðwÞ ¼ 0
otherwise. The Dirichlet distribution is a higher-dimen-
sional version of the Beta distribution, with the Beta
distribution corresponding to the case where k ¼ 2. The
normalizing function ZðfÞ for the Dirichlet distribution is
given by

ZðfÞ ¼

Z Yk

z¼1

wzz�1
z

 !
IðwÞ dw

¼

Qk
z¼1 G zzð Þ

G
Pk

z¼1 zz

� � . ð7Þ

In this expression GðyÞ ¼
R1
0 uy�1e�u du is the standard

Gamma function, which generalizes the factorial function:
if y is a nonnegative integer, then Gðyþ 1Þ ¼ y! When the
Dirichlet distribution is used as a prior in a finite groups
model, it is typical to use a symmetric Dirichlet distribution
in which all parameters are equal. The reason for using a
symmetric distribution stems from the prior being insensi-
tive to the ordering of the location parameters h. Since the
location parameters are independent of one another, their
order (i.e., the value of the index z) is irrelevant. This
exchangeability requires that the prior over w be set so that
the index is also irrelevant, which is achieved by setting a
symmetric prior.

For the purposes of deriving a prior over infinite groups,
we will assume that all parameter values zz are set to a=k.
The choice of a=k as the parameter value follows from
recognizing that the sum of the parameters of a Dirichlet
distribution can be interpreted as indicating how heavily to
weight the prior. To understand this property of the
Dirichlet parameters it may help to consider an example
using an idealized bent coin. Suppose that data are
produced by n independent flips of a bent coin. We might
propose a simple model, in which these are i.i.d. Bernoulli
trials with an unknown probability p of obtaining a head.
The prior we set over this unknown p could be Dirichlet
with only k ¼ 2 possible outcomes, corresponding to a
Beta distribution. Since we do not know which way the
coin is bent, the distribution over p should be symmetric.
We will set the parameters to a=2. If we then observe h

heads and t ¼ n� h tails in our data, our posterior
distribution is still a Beta, since the Beta family is
conjugate1 to the Binomial likelihood. The parameters of
the posterior Beta are hþ a=2 and tþ a=2. As a result, the
expected posterior value of p is p̄ ¼ ðhþ a=2Þ=ðnþ aÞ.
From the denominator, it is evident that a is commensurate
with n, in terms of its influence on this estimate. This
property generalizes to larger k. Our goal here is to specify
a prior over an infinite-dimensional outcome space W that
embodies only a limited amount of information, so it is
helpful to choose the prior in a way that keeps the amount
of information independent of the dimensionality k. The
a=k prior achieves this by ensuring that the sum of the
parameter vector is always a. For more details on the a=k

prior, see Neal (2000) and Ishwaran and Zarepour (2002).
To find the limiting prior as k!1, it is helpful to

rewrite the finite-dimensional model in a way that lets us
integrate out w. To do this, we introduce the group
membership variable gi, indicating the group to which the
ith observation belongs. Since wz gives the probability that
the ith observation belongs to the zth group, we can say
that pðgi ¼ z jwÞ ¼ wz. With this membership variable
introduced, the finite-dimensional model with this prior
becomes

xij j h; gi ¼ z�F ð� j yzÞ,

gi jw�Multinomialð� jwÞ,

w j a; k�Dirichlet � a=k
��� �

,

yz jG0�G0ð�Þ, ð8Þ

where the multinomial is of sample size one. Since the
group assignment variables gi are conditionally indepen-
dent given the weights w, when we integrate out the weights
we induce a conditional dependence between the group
assignments. If we have observed the first i � 1 group
assignments g�i ¼ ðg1; . . . ; gi�1Þ, we want the conditional
probability pðgi ¼ z j g�i; a; kÞ that is obtained by integrat-
ing out w. This distribution is given by

pðgi ¼ z j g�i; a; kÞ ¼
Z

pðgi ¼ z jwÞ pðw j g�i; a; kÞ dw.

We have already seen that pðgi ¼ z jwÞ ¼ wz. By applying
Bayes’ theorem we observe that the second term is the
posterior probability

pðw j g�i; a; kÞ / pðg�i jwÞ pðw j a; kÞ.

Since the first term is a multinomial probability and the
second term is Dirichlet, conjugacy implies that the
posterior is also Dirichlet. If we let sz denote the number
of previous observations that were assigned to group z, we
can use the size vector s ¼ ðs1; . . . ; skÞ to indicate how many
observations fall in each group. The posterior probability
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pðw j g�i; a; kÞ is a nonsymmetric Dirichlet with the para-
meter vector sþ a=k. We can now solve the integral.

pðgi ¼ z j g�i; a; kÞ

¼
1

Z sþ a=k
� � Z wz

Y
u

wsuþa=k�1
u

 !
IðwÞ dw

¼
Z sþ a=k þ 1ðzÞ
� �
Z sþ a=k
� �

¼
sz þ a=k

i � 1þ a
. ð9Þ

In this expression, 1ðzÞ is a k-length vector of zeros with a 1
in position z. The last line follows from Eq. (7) and the fact
that Gðyþ 1Þ ¼ yGðyÞ.
3.2. Extension to infinite-dimensional priors

The finite-dimensional prior can now be extended to the
infinite case by letting k!1 (see Ishwaran & Zarepour,
2002; Neal, 2000). Consider first the probability that the ith
observation falls in a group z that already contains at least
one member (i.e. sz40). In this case, the limiting
probability is

pðgi ¼ z j g�i; aÞ ¼ lim
k!1

sz þ a=k

i � 1þ a

� �

¼
sz

i � 1þ a
. ð10Þ

We now consider the probability that the ith observation
falls in one of the infinitely many groups that as yet contain
no observations. If there are k�i groups observed among
the first i � 1 observations, and letting Q denote the set of
k � k�i currently empty groups, then the probability that
the ith observation belongs to one of them is,

pðgi 2 Q j g�i; aÞ ¼ lim
k!1

X
u2Q

su þ a=k

i � 1þ a

 !

¼
a

i � 1þ a
lim

k!1

k � k�i

k

� �

¼
a

i � 1þ a
. ð11Þ

Notice that a remains commensurate with sample size in
the limiting prior (in the derivation above the sample size is
i � 1) and so can be interpreted as a measure of prior
information. In the bent coin example, a acted to drag the
estimator toward the prior, thereby shaping predictions
about future data. In the infinite groups model, large a
increases the probability that future data will be drawn
from a previously unobserved group. Since new groups
have parameter values drawn from the prior G0ð�Þ, larger a
increases the influence of the prior. Moreover, since large a
values tend to introduce more groups, it can be thought of
as a dispersion parameter.
The group assignments gi define a partition of the
subjects, with each subject being assigned to a single group.
The distribution over partitions induced by taking the limit
of a Dirichlet-multinomial model, as we did in Eqs. (10)
and (11), is the same as that induced by a stochastic process
called the Chinese Restaurant Process (CRP: e.g., Aldous,
1985; Pitman, 1996) with dispersion a. The CRP gets its
name from a metaphor based on Chinese restaurants in
San Francisco that seem to have limitless seating capacity.
In this metaphor, every possible group corresponds to a
table in an infinitely large Chinese restaurant. Each
observation corresponds to a customer entering the
restaurant and sitting at a table. People are assumed to
prefer sitting at popular tables (with probability propor-
tional to the number of people already sitting at the table),
but it is always possible for them to choose a new table
(with probability proportional to a). This gives exactly the
conditional distribution over group assignments obtained
in Eqs. (10) and (11), with the joint distribution over group
assignments written g j a�CRPð� j aÞ. The resulting model
becomes

xij j yz; gi ¼ z�F ð� j yzÞ,

g j a�CRP ð� j aÞ,

yz jG0�G0ð�Þ. ð12Þ

To complete the motivation of our prior, it is helpful to
find the prior distribution over parameter values yi, by
integrating out the group assignment variables gu. Since
these are just indicator variables, this is straightforward:

yi j h�i; a;G0�
a

i � 1þ a
G0ð�Þ

þ
Xk�i

z¼1

sz

i � 1þ a
dð� j yzÞ. ð13Þ

To avoid confusion, it is important to recognize that yz

denotes the parameter value associated with all the
members of group z, whereas h�i ¼ ðy1; . . . ; yi�1Þ denotes
parameters assigned to particular observations, as does yi.
The conditional probability described in Eq. (13) is a
mixture between the empirical distribution of the i � 1
previously observed parameters and the base distribution
G0ð�Þ.
A sequence of parameter values sampled from Eq. (13) is

sometimes said to be sampled from a Pólya urn (PU: e.g.,
Blackwell & MacQueen, 1973) parameterized by G0ð�Þ and
a. In a Pólya urn scheme, we imagine an urn full of a
colored balls, such that the proportion of balls with color y
is equal to G0ðyÞ. We sample y1 by drawing a ball at
random from the urn and recording its color. We then
return the ball to the urn and drop in another ball of the
same color, effectively ‘updating’ the urn. Using this Pólya
urn formulation to express the induced prior on y, our
model may be written

xij j yi�F ð� j yiÞ,

y1; . . . ; y1 jG0; a�PU ð� jG0; aÞ. ð14Þ
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Fig. 4. Three graphical representations of a model employing a Dirichlet process prior. Each panel depicts the same model, but shown from a different

perspective. Panel a depicts the standard view (Eq. (15)), panel b shows the Sethuraman construction (Eq. (16)) and panel c displays the construction via

the Pólya urn scheme (Eq. (14)).

2One reason for the popularity of the Dirichlet process is tractability,

since the Dirichlet process is conjugate to i.i.d. sampling (Ferguson, 1973).

If the prior over Gð�Þ is a Dirichlet process with parameters a and G0ð�Þ,

and we observe i.i.d. data with empirical distribution

Gnð�Þ ¼
1
n

Pn
i¼1 dð� j yiÞ, then the posterior distribution over Gð�Þ is a

Dirichlet process with dispersion aþ n and base distribution
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This description now allows us to select an appropriate
infinite-dimensional prior: we want to choose a prior over
the individual differences distribution Gð�Þ, subject to the
constraint that the marginal prior over the set of individual
parameters y1; . . . ; y1 is a Pólya urn scheme. As noted
by Blackwell and MacQueen (1973), one prior that meets
this requirement is the Dirichlet process (DP: Ferguson,
1973).

The Dirichlet process is widely used in nonparametric
Bayesian statistics as a method for placing priors on infinite
mixture models (e.g., Blei, Griffiths, Jordan, & Tenen-
baum, 2004; Escobar & West, 1995; Lo, 1984; Neal, 1996,
2000; Rasmussen, 2000), and has sometimes been applied
in psychometrics as a generic prior over probability
distributions in Bayesian Item Response Theory models
(e.g., Duncan, 2004; Qin, 1998). This connection between
the Dirichlet process and the Pólya urn scheme suggests
that our prior on the individual differences distribution
should be a Dirichlet process. Having elicited a principled
prior, we may now formally specify the infinite groups
model in the following way:

xij j yi�F ð� j yiÞ,

yi jG�Gð�Þ,

G jG0; a�DPð� jG0; aÞ. ð15Þ

This model is illustrated graphically in Fig. 4a. Parameters
arise from an unknown distribution Gð�Þ, and our
uncertainty about this distribution is reflected through
the Dirichlet process prior. Gray circles denote observed
variables, white circles denote latent variables, and the
rounded squares denote parameters whose values are
assumed to be known. Plates indicate a set of independent
replications of the processes inside them (Buntine, 1994).
For comparison, the Pólya urn formulation in Eq. (14) is
shown in panel c.

4. The Dirichlet process

In nonparametric problems, the goal is to learn from
data without making any strong assumptions about the
class of parametric distributions (e.g., Gaussian) that might
describe the data. The rationale for the approach is that the
generative process for a particular data set is unlikely to
belong to any finite-dimensional parametric family, so it
would be preferable to avoid making this false assumption
at the outset. From a Bayesian perspective, nonparametric
assumptions require us to place a prior distribution that
has broad support across the space of probability
distributions. However, Bayesian nonparametrics are not
widely known in psychology (but see Karabatsos, in press),
so a brief discussion may be helpful.
The Dirichlet process, now a standard prior in Bayesian

nonparametrics, was constructed by Freedman (1963)
during a discussion of tail-free processes, and the associated
statistical theory was developed by Ferguson (1973, 1974).
The Dirichlet process represents a partial solution to the
problem of Bayesian nonparametric inference, in the sense
that it does have broad support, but the sampled
distributions are discrete with probability 1 (e.g., Black-
well, 1973; Ferguson, 1973 Ghosh & Ramamoorthi, 2003,
pp. 102–103; Sethuraman, 1994). As a result it is often used
as a prior over discrete distributions2 and it is in this
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capacity that we have used the Dirichlet process in this
paper. Since we require an infinite number of variables (the
countably infinite elements of w and h) to describe a sample
from the Dirichlet process, it is often referred to as an
infinite-dimensional model.

4.1. Stick-breaking priors

The simplest description of the Dirichlet process applies
the notion of a stick-breaking prior (e.g., Ishwaran
& James, 2001; Ishwaran & Zarepour, 2002). This
construction was first discussed by McCloskey (1965),
and formalized by Sethuraman (1994). In this formula-
tion, we start by noting that discrete distributions can be
written

Gð�Þ ¼
X1
z¼1

wzdð� j yzÞ,

as per Eq. (4). Since the distribution can be described by
the infinite set of point masses yz and the infinite set of
weights wz, this construction specifies two separate priors.
As illustrated in Fig. 4b, the base distribution places a prior
over the locations of the point masses, while the dispersion
parameter can be used to place a stick-breaking prior over
their weights, denoted Stick(1; a). In other words, an
infinite mixture model that uses a Dirichlet process prior
(i.e. Eq. (15)) can be rewritten,

xij j y1; . . . ; y1; gi ¼ z�F ð� j yzÞ,

gi jw1; . . . ;w1�Multinomialð� jw1; . . . ;w1Þ,

w1; . . . ;w1 j a�Stickð� j 1; aÞ,

yz jG0�G0ð�Þ, ð16Þ

where the multinomial distribution in the second line is of
sample size 1. The stick-breaking process can be illustrated
in the following way. Imagine we started with a stick of
length 1, broke it in two, and took the length of one of the
pieces to be the first weight. We then broke the remaining
piece in two, using one of the resulting pieces as the second
weight. This process continues for a countably infinite
number of breaks, as illustrated in Fig. 5, and results in an
infinite set of stick-lengths that sum to 1 with probability 1.
More formally, at each step of the process the proportion
of the stick w0z that is broken off follows a Beta
distribution,3 so that

w0z j a�Betað� j 1; aÞ.
(footnote continued)
a

aþn
G0ð�Þ þ

n
aþn

Gnð�Þ. However, it is important to note that since the

Dirichlet process concentrates on discrete distributions, it can be

unsuitable as a prior over densities. For instance, Diaconis and Freedman

(1986) provide an example of pathological behavior when the Dirichlet

process is used in this way.
3In the more general class of stick-breaking priors the parameters of the

Beta variate can vary across breaks, with the zth Beta distribution having

parameters az; bz.
Thus, the length of the zth stick fragment is given by

wz ¼ w0z

Yz�1
u¼1

ð1� w0uÞ.

A nice property of the stick-breaking construction is that it
allows us to draw approximate samples from the Dirichlet
process, by sampling the values of wz from the stick-
breaking process until the sum of the observed values is
sufficiently close to 1. Having done so, we then sample the
corresponding yz values independently from G0ð�Þ, and
treat the resulting (sub)probability distribution as an
approximation to Gð�Þ. By doing this, we can get a sense
of what these distributions look like. Fig. 6 shows three
distributions sampled from three different choices of G0ð�Þ,
and a dispersion parameter value of a ¼ 100 in each case.
As is immediately apparent, the base distribution places a
prior on the shape of Gð�Þ. By way of comparison, Fig. 7
shows a number of distributions sampled from a Dirichlet
process with a uniform distribution over ½0; 1� as the base
distribution G0ð�Þ, and dispersion parameters of a ¼ 100
(top row), a ¼ 20 (middle row), and a ¼ 5 (bottom row). It
illustrates the manner in which smaller values of a tend to
concentrate the distribution on fewer values of yz.
4.2. Learning the dispersion of data

A difficulty with Dirichlet process models, noted by
Antoniak (1974), is that it is usually too restrictive to
specify a value of a a priori. The dispersion parameter
reflects the degree of variability in the parameter values,
and is something we would prefer to learn from data. In
order to do so, we first need to understand the relationship
between the dispersion a and the number of groups k that
will manifest among n subjects. Note that k now refers not
to the ‘true’ number of groups, but to the number of
manifest groups. Antoniak (1974) shows that the prob-
ability pðk j a; nÞ that k groups will be observed in n samples
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from a model with a Dirichlet process prior is

pðk j a; nÞ ¼
n!GðaÞ
Gðaþ nÞ

znkak

¼ nBða; nÞznkak

/ znkak, ð17Þ

where Bðu; vÞ ¼ GðuÞGðvÞ
GðuþvÞ

¼
R 1
0 Zu�1ð1� ZÞv�1 dZ is a standard

Beta function and znk is an unsigned Stirling number of the
first kind. The unsigned Stirling numbers count the number
of permutations of n objects having k permutation cycles
(Abramowitz & Stegun, 1972, p. 824), and are found by
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the base distribution is Betað� j 10; 2Þ, while in the middle row it is a

uniform Betað� j 1; 1Þ, while in the bottom row it is an equal mixture of a

Betað� j 10; 1Þ and a Betað� j 1; 10Þ.
taking the absolute value of the corresponding signed
Stirling numbers znk ¼ jsnkj. There is no analytic expression
for snk, but it is easily calculated using the recurrence
formula snk ¼ sn�1;k�1 � ðn� 1Þsn�1;k, and the special cases
snn ¼ 1 for all n and sn0 ¼ 0 for n40. Note that the use of s

and z in this notation is unrelated to the previous use as the
group sizes and indices (the two uses will not come into
conflict). Antoniak (1974) also observes that the expected
number of components sampled from a Dirichlet process is
given by

E½k j a; n� ¼
Xn

k¼1

k pðk j a; nÞ

¼ a
Xn

k�1

1

aþ k � 1

� a ln
nþ a
a

� �
. ð18Þ

Thus, although k!1 with probability 1 as n!1

(Korwar & Hollander, 1973), the number of components
increases approximately logarithmically with the number
of observations. This is illustrated in Fig. 8a, which shows
how the prior over the number of components changes as a
function of n, for a Dirichlet process with a ¼ 10.
In many contexts the dispersion a is unknown, so we

specify a prior distribution pðaÞ, allowing us to learn a from
data. The resulting model is known as a Dirichlet process

mixture. Antoniak (1974) notes that the posterior distribu-
tion for a is influenced only by the number of distinct
groups k, and not by the details of the allocation of
observations to those groups. Therefore, since pðk j a; nÞ
provides the likelihood function for k, we can apply
Eq. (17) to find the posterior distribution over a given some
observed data containing k groups. Since the prior on a is
not dependent on the sample size n, we may write,

pða j k; nÞ / pðk j a; nÞ pða j nÞ

¼ pðk j a; nÞ pðaÞ

/ Bða; nÞ ak pðaÞ. ð19Þ

A common choice for pðaÞ is the (inverse) Gamma
distribution a j a; b�Gammað� j a; bÞ in which pðaÞ /
aa�1e�ba (Escobar & West, 1995). If so, the posterior
1 0 1
0

0.35

p(
θ|

G
)

tion over ½0; 1� as the base distribution G0ð�Þ, and dispersion parameters of

bly infinite number of components (most of which are too small to see), but

ted on a few points.



ARTICLE IN PRESS

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

sample size, n

nu
m

be
r 

of
 g

ro
up

s,
 k

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

sample size, n

nu
m

be
r 

of
 g

ro
up

s,
 k

(a) (b)

Fixed � Random �

Fig. 8. Prior distributions over the number of components k for sample sizes n ranging from 1 to 25. The panel on the left shows the prior for a Dirichlet
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n. The panel on the right shows the marginal prior over k for a Dirichlet process mixture in which the prior over a is an inverse Gamma(� j 10�10, 10�10)

distribution.

4Note that Lee and Webb’s (in press) approach to finite group selection

is a little different to standard model order selection. Rather than placing

an implicit uniform prior over k, they use an implicit uniform prior over

the possible partitions of n subjects.
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distribution becomes,

pða j k; nÞ / aaþk�1e�baBða; nÞ. (20)

In particular, Escobar and West (1995) note that if we let
a! 0 and b! 0 we obtain a so-called scale-invariant
prior in which pðaÞ / 1=a (e.g., Jeffreys, 1961; Kass &
Wasserman, 1996). However, since this Gamma(� j 0; 0)
prior is improper, we have chosen to approximate it
with the proper but extremely similar prior Gamma
(� j 10�10; 10�10). Fig. 8b shows the marginal prior over k

resulting from this choice of prior.

5. Model selection with infinite groups

One benefit to the infinite groups model is the principled
perspective that it provides on the model order selection
problem. Since model order selection problems are
commonplace in psychological modeling (e.g., Griffiths &
Steyvers, 2004; Landauer & Dumais, 1997; Lee, 2001; Lee
& Navarro, 2005) it is worth discussing this point in a little
more detail.

When working with finite models, it is natural to think of
k as the intrinsic model order. Every value of k describes a
different family of distributions in Eq. (3), and so it is easy
to think of k as defining a model Mk consisting of all
discrete distributions that consist of exactly k point masses.
This means that, when inferring a finite group model to
account for individual differences, we need to address the
model selection question of choosing a model Mk, and a
parameter estimation problem in which we pick a
distribution Gð�Þ 2Mk. From a Bayesian standpoint (e.g.,
Wasserman, 2000) we would find a posterior distribution
over the models pðMk jxÞ and use this to draw our
inference about k. In order to find this posterior, we need
a prior distribution pðMkÞ. However, since it is not easy to
see how this prior might be chosen, it is quite common to
use Bayes factors (e.g., Kass & Raftery, 1995). This
corresponds implicitly to the use of a uniform prior over
model orders, which may not be appropriate.4 It seems
unlikely, for example, that experimental data from 40
subjects—thus requiring the consideration of model orders
1; 2; . . . ; 40—is equally as likely to contain 23 different
groups of subjects as it is to contain two different groups of
subjects.
The infinite groups model takes a different view. By

assuming that the distribution Gð�Þ has an infinite number
of groups, we no longer have any model classes to select
between. In this framework, we view k as the variable

expression of Gð�Þ through finite data. When we set a prior
in this approach, it is over the distributions themselves: a
prior that we have derived from basic considerations about
the structure of the model. This, in turn, implies a prior
over k that reflects the rate at which new groups are
expected to appear when sampling from Gð�Þ. At no point
do we need to specify artificial model classes. Moreover,
since the natural way to think about inference is to do
posterior sampling over Gð�Þ, the number of observed
groups k will emerge in inferring Gð�Þ, rather than via a
dedicated model selection procedure.

6. Modeling discrete data with infinite groups

We now turn to the specification and application of the
infinite groups model to situations in which subjects
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provide discrete data. Suppose that n people perform some
task in which m possible responses can be made on each
trial, and the ith person experiences ri trials. We will specify
a simple cognitive model in which there is a multinomial
distribution with parameter vector hi ¼ ðyi1; . . . ; yimÞ for
the behavior of participant i. In this situation, the natural
way to describe data from the ith participant is with the
vector xi ¼ ðxi1; . . . ;ximÞ, in which xih counts the number of
times that participant i made response h. Note that this is a
slight change from the previous notation, since xi is now a
vector of counts rather than a list of the outcomes for every
trial. Since our cognitive model is multinomial, it is natural
to use a Dirichlet distribution as the prior over hi.
Specifically, we will assume a symmetric Dirichlet base
distribution with parameter b. This cognitive model,
including the prior, is written

xi j hi�Multinomialð� j hiÞ,

hi jb�Dirichletð� jbÞ.

If we now assume that each person belongs to one of an
infinite number of latent groups, we would incorporate an
individual differences model by assuming that each
parameter value hi is drawn from some discrete distribution
Gð�Þ, and use the Dirichlet process to place a prior over
these distributions. However, since we do not wish to make
strong assumptions about the dispersion parameter a, we
use the Dirichlet process mixture model in which we
assume that a follows an inverse Gamma distribution. If
we write this model using the stick-breaking notation (as in
Eq. (16)), we obtain the model

xi j h1; . . . ; h1; gi ¼ z�Multinomialð� j hzÞ,

gi jw1; . . . ;w1�Multinomialð� jw1; . . . ;w1Þ,

w1; . . . ;w1 j a�Stickð� j 1; aÞ,

a j a; b�Gammað� j a; bÞ,

hz jb�Dirichletð� jbÞ, ð21Þ

where the multinomial in the second line is of sample size 1.
The model is illustrated in Fig. 9. Performing inference in
this infinite groups model using the mixture of Dirichlet
processes prior means being able to estimate the joint
posterior distribution pðg; h; a jx; a; b;bÞ. A straightforward
Gibbs sampling scheme for drawing samples from this
posterior distribution is presented in the appendix. From
these posterior samples we can construct estimates of the
posterior distribution itself using some density estimation
technique (e.g., Hastie, Tibshirani, & Friedman, 2001,
pp. 182–190).

Using this model to make inferences from data there are
several marginal posteriors that are of particular interest,
corresponding to different theoretical questions. Some
examples include:
(1)
 How many groups? This question corresponds to the
model order selection problem, by asking how many
groups are manifest in the data. To answer this, we
want to know pðk jxÞ, the posterior probability that
there are k distinct groups in the sample x. Notice that
this is a property of the observed data, not an inference
about a population parameter.
(2)
 How dispersed is the population? The complementary
question to (1) is to ask how groups might be
distributed in the population. Of course, in an infinite
population it is not sensible to ask how many groups
exist. The relevant distribution is pða jxÞ, the posterior
distribution over the dispersion parameter. If most
subjects fall into a single group, then the posterior over
a will place most mass on small values, since the
population is unlikely to be highly dispersed.
(3)
 What are the groups? Clearly, in drawing inferences
about the sample we want to know not just how many
groups there are, but also which people tend to belong
to the same groups. In this case, we want to know
pðg jxÞ. In some cases, we might want to find the
maximum a posteriori (MAP) estimate for the group
structure, namely ĝ ¼ arg maxg pðg jxÞ. Alternatively,
we might aim to get a sense for the full distribution
pðg jxÞ by finding specific groupings that consistently
appear in the posterior.
(4)
 What performance characterizes a group? The original
motivation for proposing a groups model was to learn
which subjects could be characterized in the same way.
Having inferred that some subjects belong to the same
group, we would like to know what parameter values of
the cognitive model describe their performance. In this
case, we want to know pðh jx; gÞ, or some other
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summary measure for this distribution such as
E½pðh jx; gÞ�.
A3 A4

A1 A2

B1

B2

Fig. 11. The category densities used in McKinley and Nosofsky’s (1995)

experiment 2. Category A (dark gray) is a mixture of four Gaussians, while

category B (light gray) is a mixture of two Gaussians. The 30%, 60% and

90% confidence ellipses are shown for each of the six densities.
To provide a simple illustration of the performance of the
model in the context of the first question ‘‘how many

groups?’’, we created random data sets with n ¼ 100 people
and r ¼ 100 discrete observations per person, where each
observation denotes a choice of one of m ¼ 20 response
options. The sample was divided into k groups, and each
group associated with a multinomial rate y sampled from a
uniform distribution. People were allocated randomly to
groups, subject to the constraint that each group contained
at least one member. The number of groups in the data
varied from 5 to 25, with 500 data sets generated for each.
For each data set, we ran the Gibbs sampler for 500
iterations and then drew a single sample from the posterior
distribution. Fig. 10 plots the distribution over the
recovered number of groups as a function of the true
number of groups represented in the data. Inspection of
this figure shows that, for the most part, the Gibbs sampler
recovers the appropriate number of groups in the data.
There is a slight tendency to underestimate the number of
groups in some cases, but as argued by Kontkanen,
Myllymäki, Buntine, Rissanen, and Tirri (2005), this is
not undesirable behavior when extracting a partition, since
it generally reflects ‘‘different’’ groups with parameter
values so similar that they cannot be distinguished without
much more data. Erring on the side of simpler models
would appear to be the right thing to do in this situation.
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10. Simulations in which n ¼ 100 people provide s ¼ 100 observa-

s each, and m ¼ 20 response options are possible on every trial. The

number of groups varies from 5 to 25. After a burn-in of only 500

ples, and using only a single draw from the posterior distribution, the

bs sampler performs reasonably well.
7. Individual differences in categorization

We now present an application of the infinite groups
model. An elegant category learning experiment by
McKinley and Nosofsky (1995) investigated 10 people’s5

ability to discriminate between the two probabilistic
categories shown in Fig. 11. The stimuli were circles with
a radial line running through them, and so the two
dimensions depicted in Fig. 11 correspond to the radius of
the circle, and the angle of the line. Category A (dark gray)
is a mixture of four bivariate Gaussian distributions, while
category B (light gray) is a mixture of two Gaussians. On
any given trial in the experiment, a stimulus was sampled
from one of the six Gaussian distributions. Subjects were
asked whether it came from category A or category B, and
provided feedback as to the accuracy of their response.
Because the categories are inherently probabilistic and the
category densities are quite complicated, this task is very
difficult, and shows evidence of differences not only during
the course of category learning, but in the final structures
learned.
In order to learn about the variation between subjects,

we applied the infinite groups model to the data from this
experiment. In doing so, we were interested in how the
subjects’ classification performance varied as a function of
the source. For the ith participant we obtain the data vector
xi ¼ ðx

ðA1Þ

i ;xðA2Þ

i ;xðA3Þ

i ;xðA4Þ

i ; xðB1Þ

i ;xðB2Þ

i Þ in which x
ðlÞ
i records

the number of correct responses to stimuli generated from
distribution l. We are also given a vector of sample sizes,
ri ¼ ðr

ðA1Þ

i ; rðA2Þ

i ; rðA3Þ

i ; rðA4Þ

i ; rðB1Þ

i ; rðB2Þ

i Þ indicating how many
trials of each type appeared in each subjects’ data. The
5McKinley and Nosofsky (1995) actually report data for 11 subjects.

However, the data currently available to us include only 10 of these.
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natural thing to model is the probability of making the
correct response to stimuli sampled from each of the six
components. So the model would predict that for the ith
participant, pðCorrect jSample from A1Þ ¼ yðA1Þ

i . The cog-
nitive model therefore describes binomial distributions, so
that if the ith participant belongs to group z,

x
ðlÞ
i j r

ðlÞ
i ; y

ðlÞ
z ; gi ¼ z�Binomialð� j yðlÞz Þ

for all l 2 ðA1;A2;A3;A4;B1;B2Þ, and where the binomial is
of sample size r

ðlÞ
i . Group z would therefore have the

parameter vector hz ¼ ðy
ðA1Þ
z ; yðA2Þ

z ; yðA3Þ
z ; yðA4Þ

z ; yðB1Þ
z ; yðB2Þ

z Þ,
where each element of this vector is a binomial rate. The
fact that we have specified a multidimensional space for x
and h has no bearing on the stick-breaking prior over w, so
it is still appropriate to write the infinite discrete groups
model as

gi jw1; . . . ;w1�Multinomialð� jw1; . . . ;w1Þ,

w1; . . . ;w1 j a�Stickð� j 1; aÞ,

a j a; b�Gammað� j a; bÞ.

The only modification that we need to make is to specify a
multidimensional base distribution G0ð�Þ. To do so, we
assume that each of the binomials has the same symmetric
Beta prior, implying that

yðlÞz �Betað� jbÞ

for all l 2 ðA1;A2;A3;A4;B1;B2Þ.
For each of the 10 subjects we used only the last 300

trials of the experiment, in order to look for differences in
the learned category structure, rather than differences in
the learning process itself. In order to conduct a Bayesian
analysis, we set principled a priori parameter values rather
than fitting the model to the data. Since we know that both
responses (i.e., ‘‘A’’ and ‘‘B’’) are possible but are otherwise
‘‘ignorant’’, the natural choice for the base distribution is
the uniform distribution (see Jaynes, 2003, pp. 382–386),
which is obtained by setting b ¼ 1, and since we have no
strong beliefs about a we would like a scale-invariant prior
(see Jeffreys, 1961) in which a! 0, b! 0. Once again, in
order to ensure a proper prior, we chose a ¼ b ¼ 10�10 as a
compromise between ignorance and propriety. To approx-
imate the posterior distribution over a, k and other relevant
parameters, we used the Gibbs sampler to draw 10,000
samples from the joint posterior distribution (after an
initial burn-in period of 1000 iterations), with a lag of 5
iterations between samples to minimize autocorrelation
between samples.

We first consider the question of selecting the model
order (‘‘how many groups?’’) by examining how the
distribution pðk jxÞ changes as a function of n. To do this,
we imagine that the 10 subjects entered the lab in order of
participant ID. Fig. 12 shows how the posterior distribu-
tion over k changes as more subjects are observed: the
model grows with the data. Initially there is evidence for
only a single group, but once the 10th participant is
observed, there is strong evidence for about 3 or 4 groups.
The last of these posterior distributions (in the case when
n ¼ 10) is illustrated in Fig. 13b. We can also use our
samples to ask about the amount of variability that we
believe exists in the population (‘‘how much dispersion?’’).
Fig. 13a shows the estimated posterior density pða jxÞ,
which indicates a strong preference for smaller values of a.
However, with such a small sample size, this distribution
still reflects the near-ignorance prior that we chose for this
analysis.
Turning now to the third question (‘‘what are the

groups?’’), the small number of subjects allows us to
present a nice summary of the behavior of the posterior
distribution pðg jxÞ. To do so, Table 1 shows the estimated
(marginal) posterior probability that any two subjects
belong to the same group. This table reveals a rich pattern
of similarities and differences, indicating that the relation-
ships between subjects is not arbitrary. To illustrate this,
we turn to a characterization of the groups themselves
(‘‘what performance?’’). For these data, it is most informa-
tive to plot some of the raw data rather than report
parameter values, because the data have a natural two-
dimensional graphical structure while the parameters are
naturally six-dimensional. Fig. 14 plots the last 300 stimuli
observed by subjects 5, 7, 8 and 9, and the decisions that
they made. Broadly speaking, participant 5 is sensitive only
to variation along the x-axis, participant 7 is sensitive only
to variation on the y-axis, while subjects 8 and 9 do a good
job of learning the category structures on both dimensions.
As a result, subjects 5 and 7 rarely appear in the same
group as one another or with subjects 8 and 9 (with
probabilities ranging from 0% to 7%), while subjects 8 and
9 almost always (91%) co-occur. In other words, the
relational structure implied by Table 1 reflects the
qualitative individual differences that are apparent from
visual inspection of Fig. 14.
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Table 1

Estimated probability with which subjects in McKinley and Nosofsky’s

(1995) experiment 2 belong to the same group

1 2 3 4 5 6 7 8 9 10

1 37 0 73 0 58 68 36 43 55

2 22 34 1 68 56 3 5 67

3 1 57 1 0 0 0 2

4 0 44 52 53 60 43

5 0 0 0 0 0

6 86 4 7 93

7 11 16 86

8 91 4

9 7

For visual clarity, the probabilities are given as percentages.
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Fig. 13. Estimated posterior distributions over a and k when the infinite groups model is applied to McKinley and Nosofsky’s (1995) experiment 2.
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Fig. 14. Last 300 trials for subjects 5, 7, 8 and 9 in McKinley and

Nosofsky’s (1995) experiment 2. Black dots denote ‘‘A’’ responses, and

gray dots denote ‘‘B’’ responses.
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8. Individual differences among psychologists

Another application of the infinite groups model regards
the publication habits of psychologists. As an initial
investigation, we took the publication lists posted on the
websites of staff in psychology departments at the
following six institutions: Boston College, Cardiff Uni-
versity, Johns Hopkins University, The University of
Edinburgh, Florida Atlantic University and Colorado
State University. This yielded a total of 125 academics
publishing in 254 outlets.6 Since most academics list only
recent or selected publications, the data represent a subset
of publication behavior that people prefer to announce.
The distribution of the number of listed publications per
academic was highly skewed (the skewness was 5.25), with
a median value of 7 and an interquartile range of 10.5.

Using the infinite groups model, we would like to learn
the patterns of similarity and difference in declared
6The original data set contained 508 outlets, but half of them were

missing from the analyzed data set due to a corrupted file.
publication preferences among these authors. The model
in this case is straightforward version of the usual infinite
groups model, with a single group corresponding to a
multinomial distribution over the 254 outlets. Again, we
start only with the belief that any author is able to publish
in any outlet, implying that b ¼ 1. Not knowing anything a
priori about the dispersion, we set the prior by setting
a ¼ b ¼ 10�10. After an initial burn-in period of 1000
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samples to ensure that the Gibbs sampler had converged,
we drew 10,000 samples from the posterior distribution
over groups, with a lag of 5 iterations between samples.
The resulting posterior distributions over a and k are
shown in Fig. 15, and suggest that there are most likely
between 12 and 17 groups in these data.

One difficulty with the analysis of these data is that the
full posterior distribution over group assignments cannot
be displayed easily. In order to provide insight into the
structure that the infinite groups model extracts from these
data, we undertook the following analysis. We took a set of
10 successive samples (again, with a lag of five) from the
Markov chain used to produce Fig. 15, and averaged
across the corresponding 10 partitions to find an estimate
for the expected probability with which each academic
belongs to each group. In order to interpret the groups, we
can list the names of the people that are expected to belong
to them. Alternatively, we can find the ‘‘prototypical
performance’’ associated with each group. In this case, we
can calculate the expected probability with which a group
member publishes in a particular journal. A simple way of
interpreting the groups is to provide a list of typical
journals for each group, since journal names are highly
informative, whereas the author names often are not.

Note that this is a rather different analysis to the one we
would obtain if we partitioned the journals themselves. In
this case we are interested in groups of people, and measure
their common behavior in terms of the journals they
publish in. This does not necessarily produce partitions of
journals, however, since multiple groups of people may use
the same journal. In short, the idea is we want groups of
authors because we are interested in their individual
differences: in this analysis, journal usage is the ‘‘para-
meter’’ for a group of authors, rather than the other way
around. We should also mention the reason for using a
small number of nearby samples. In this analysis, we want
0 5 10 15
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Fig. 15. Estimated posterior distributions over a and k when th
to partially preserve the autocorrelation between samples.
This is because the full posterior distribution is likely to be
multimodal, and while ‘‘local averaging’’ across samples
from the same peak is likely to be beneficial, averaging
across samples from different peaks would likely corrupt
the analysis. We repeated this procedure across a large
number of randomly chosen locations in the Markov
chain, and looked for stable clusters of authors, defined as
those that produced strong agreement in the rank ordering
of journals.
Table 2 shows the top five journals for the five most

prominant groups found in the posterior distribution. As
indicated by the labels, four of the five groups have a very
natural interpretation in terms of sub-fields within the
discipline, namely cognitive, behavioral, social and devel-
opmental psychology. The fifth group contains journals
that are representative of both medical research (e.g.,
Diabetic Medicine and British Medical Journal) and
differential psychology (e.g., Intelligence and Personality

& Individual Differences). While there is a possibility that
this reflects a broader correlation in the interests of
psychologists, it seems more likely that this cluster results
from the multiple interests of some members of our sample.

9. Individual differences in web browsing

The final application considers the behavior of 1000
people browsing on MSNBC.com and news-related por-
tions of MSN.com on September 28, 1999. Rather than
record every webpage viewed, each page is classified using
one of the 17 categories listed in Table 3, such as ‘‘news’’,
‘‘technology’’ and ‘‘health’’. For every user the data count
the number of times they visited pages belonging to each of
the categories. The number of webpages that belonged to
each category varied from 10 to 5000. This data set is taken
from a much larger public database that records the
10 15 20 25
0
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0.1

0.15

0.2

k

p(
k 

| x
)

e infinite groups model is applied to the publications data.
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Table 2

Prototypical journals for the five most prominant author-clusters

1. Cognitive Psychology

Journal of Experimental Psychology: Learning, Memory & Cognition

Journal of Experimental Psychology: Human Perception & Performance

Brain & Language

Perception & Psychophysics

Quarterly Journal of Experimental Psychology

2. Behavioral Psychology

Journal of Experimental Psychology: Animal Behavior Processes

Quarterly Journal of Experimental Psychology

Journal of the Experimental Analysis of Behavior

Behavioral Neuroscience

Applied Ergonomics

3. Social Psychology

Journal of Personality & Social Psychology

Personality & Social Psychology Bulletin

Cognition & Emotion

Social Cognition

The Behavioral & Brain Sciences

4. Developmental Psychology

Developmental Psychology

Journal of Experimental Child Psychology

Developmental Review

Infant Behavior and Development

Learning & Individual Differences

5. Medicine & Differential Psychology

Personality & Individual Differences

Intelligence

Diabetic Medicine

British Medical Journal

Diabetes Care

The rankings are based on data that are normalized for the base rates of

both journals and authors. All five represent structures that are found

across most of the posterior distribution.

Table 3

Categories for the MSNBC.com web pages

1. Front Page 7. Miscellaneous 13. Summary

2. News 8. Weather 14. Bulletin Board Service

3. Technology 9. Health 15. Travel

4. Local 10. Living 16. MSN-News

5. Opinion 11. Business 17. MSN-Sport

6. On-Air 12. Sports
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behavior of all 989,818 (anonymous) users that visited
MSNBC.com on that day, previously analyzed in some
detail by Cadez, Heckerman, Meek, Smyth, and White
(2003).

One reason for considering these data is that they
represent the unconstrained behavior of people engaged in
a natural task. The analysis of large, natural data sets is not
a standard approach in cognitive psychology which has
traditionally been dominated by the experimental method.
Although generally effective, this approach tends to restrict
the domain of psychology to simplistic, often implausible
contexts. As a complementary approach, analyzing large
data sets collected in rich environments provide a reflection
of real-world behavior and decision-making. By applying
cognitive models in such contexts, we may obtain insights
that are not easily obtained in the laboratory.
To analyze these data using the infinite groups model, we

group visitors to the site by the frequencies with which they
visit each of the 17 categories of websites. Once again, the
cognitive model is a multinomial over the 17 categories,
and we want to find groups of people who have the same
multinomial. To do so, we again assume that b ¼ 1 and
a ¼ b ¼ 10�10. After a burn-in of 1000 samples, we again
drew 10,000 samples from the posterior pðg jxÞ with a lag
of 5 iterations between samples. The posterior distributions
over a and k are shown in Fig. 16, and suggest that there
are approximately 40 different groups represented among
these 1000 people. In order to provide an interpretable
summary of the full posterior over groups, we repeated the
analysis used in the last section, in which we associate
groups with an ‘‘expected performance profile’’. In this
case, we find the expected distribution over the 17
categories for each different group. However, since there
is a great deal of uncertainty about the make-up of many of
the groups, we restrict the analysis to a few of the
prominent and consistent groups.
As with the publication data, there is evidence for stable

groupings of people. Across most of the posterior
distribution we observe the three groups illustrated on
the left hand side of Fig. 17. In each case, there is a group
of people who visit only one type of web page, either ‘‘front
page’’, ‘‘summary’’ or ‘‘weather’’. Given the extremely
tight focus of these distributions, we might safely conclude
that these people were engaged in very specific searches.
Their interactions with the web environment were pre-
sumably oriented towards a well-specified objective (e.g.,
find a weather report). On the other hand, there is some
evidence for groups such as those illustrated on the right-
hand side of Fig. 17. In these cases, people visited a range
of different pages, particularly ‘‘front page’’, ‘‘news’’,
‘‘technology’’ and ‘‘on-air’’ pages. Distributed patterns of
hits such as these suggest a different interpretation of user
behavior. In these cases, people appear to be engaged in
exploratory search through the web environment (i.e.,
genuinely ‘‘browsing’’ rather than simply ‘‘looking-up’’).
There is a great deal of variety in the kinds of

exploratory browsing patterns observed across the poster-
ior distribution. An exploratory analysis suggests that the
clustering of ‘‘front page’’, ‘‘news’’ and ‘‘technology’’ pages
is highly stable, in the sense that across most of the
posterior there exist large groups that assign high prob-
ability to all three categories. However, there is a
considerable degree of (apparently smooth) variation in
the relative interest in these three topics. This is illustrated
in the comparison between panels d and e in Fig. 17, which
show the same qualitative pattern of preferences, but
display subtle differences in the various probabilities.
Moreover, when we consider panel f, the same ‘‘clumping’’
of ‘‘front page’’, ‘‘news’’, ‘‘technology’’, is observed, but
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Fig. 16. Estimated posterior distributions over a and k when the infinite groups model is applied to the web data.

D.J. Navarro et al. / Journal of Mathematical Psychology 50 (2006) 101–122118
with the addition of ‘‘local’’ and ‘‘bulletin board service’’
instead of ‘‘on-air’’. Finally, there is some variation across
the full posterior distribution in terms of the kinds of
patterns it identifies.

Taken together, these results suggest that, while the
infinite groups model is highly successful at identifying the
focused search behavior illustrated on the left hand side of
Fig. 17, the more complex variation in exploratory
browsing behavior is only captured in part. The apparently
smooth variation from panel d to panel e suggests that a
more complete account of individual differences in web
browsing may require multimodal and continuous para-
meter distributions. The fact that there are similarities
between panel d and panel f, for instance, suggests that we
may need to explore models that allow structured relation-
ships between groups.

10. General discussion

Cognitive models aim to describe and predict how
people think and act. Since different people think and act
in different ways, we require models that allow us to learn
complicated patterns of variation. The individual differ-
ences framework outlined in this paper provides a powerful
method of representing the similarities and differences
between people. By using a group model we can capture
multimodality in individual differences, thereby remaining
sensitive to the possibility of qualitative differences in
performance. By adopting the Dirichlet process prior, we
are able to view observed groups not as a fixed structure
that fully explains the variation between individuals, but
rather as representatives of a latent, arbitrarily rich
structure. Additionally, by placing a prior over the
dispersion we are able to learn about the extent of the
variability itself.

Our approach could be extended in a number of ways,
enabling us to capture a greater range of individual
differences phenomena. One very simple extension would
be to generalize the Dirichlet process prior to other stick-
breaking priors. As Ishwaran and James (2001) note, this
family is quite general, incorporating the Poisson–Dirichlet
process (Pitman & Yor, 1997) and Dirichlet-Multinomial
processes (Muliere & Secchi, 1995) among others. Alter-
natively, one might choose to move beyond priors over the
discrete distributions, instead using a different class of
nonparametric priors, one that covers continuous distribu-
tions such as Pólya trees (Ferguson, 1974; Kraft, 1964) or
Dirichlet diffusion trees (Neal, 2003).
A different extension to the framework can be motivated

by returning to the unlucky numbers experiment. In this
example there is an issue regarding how to treat the one
person who responds 86. Does this person belong with the
10 people who said 87? It may be the case that this person is
not a cricket fan, and is a representative of a genuinely new
group (fans of Agent 86 in the TV show Get Smart,
perhaps). It is difficult to distinguish these cases, particu-
larly since group models are rather unforgiving in their
requirement that all group members share the same
parameter value. One of the merits of the stochastic
parameters approach is that it allows some smooth
variation. If our data consisted only of cricket fans, a
stochastic parameters model would learn an individual
differences distribution centered on 87, since this is the
typical behavior, but allow some variability to be
expressed. However, once we reintroduce the 13 group
and the 4 group, a unimodal stochastic parameter model
will be inadequate.
A natural solution to this problem would be to build

individual differences models that capture the strengths of
both frameworks. One approach would be to adopt
an infinite stochastic groups model, which would produce
multimodal continuous distributions by convolving
each point mass with a continuous distribution. In
this approach, we would assume that there are distinct
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Fig. 17. Six different groups observed in the web data. In the three groups shown on the left, people visited only one type of page, either ‘‘front page’’,

‘‘summary’’ or ‘‘weather’’. All three groups on the right show a consistent tendency to visit ‘‘front page’’, ‘‘news’’, ‘‘technology’’ and ‘‘on-air’’ pages, but

with different relative frequencies in each case. In addition, group (f) also shows interest in ‘‘health’’ and ‘‘bulletin board’’ pages.
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groups of subjects in our data, as with the infinite groups
approach. However, within a group we would allow
there to be continuous, unimodal variation, as with
the stochastic parameters approach. Indeed, one of the
reasons that we have avoided conducting some sort of
competition between the different frameworks is that they
are designed to address different phenomena. Accordingly,
we feel that the better approach is to pursue more powerful
modeling frameworks that integrate the best features of
each.
Another direction for future work would be to allow

structured relationships between groups. One possibility
would be to postulate a separate Dirichlet process prior
over each parameter. Alternatively, we could use a
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hierarchical Dirichlet process (Teh, Jordan, Beal, & Blei,
2004), in which the distribution sampled from a Dirichlet
process is itself a Dirichlet process. Finally, we may wish to
consider an idiosyncratic strategies model, in which it is
assumed that all subjects draw on a common set of
strategies but combine them in an unique way (e.g.,
Girolami & Kabán, 2004). In short, the infinite groups
model is not by itself an authoritative account of individual
differences. Rather, it is a representative of a large class of
flexible models, each suggesting a fruitful approach for the
development of powerful new cognitive models of indivi-
dual differences.
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Appendix A. A Gibbs sampler for infinite discrete groups

Statistical inference in the infinite discrete groups model
(Eq. (21)) can be achieved using Gibbs sampling, a Markov
chain Monte Carlo (MCMC) method for sampling from
the posterior distribution over the variables in a Bayesian
model. The Gibbs sampler was introduced to statistics by
Geman and Geman (1984), although it was already well-
known in physics under the name of the ‘‘heat-bath
algorithm’’ (Creutz, Jacobs, & Rebbi, 1979). Gilks,
Richardson, and Spiegelhalter (1995) and Chen, Shao,
and Ibrahim (2000) provide good discussions of MCMC
methods, while Neal (2000) provides a detailed discussion
of Gibbs sampling in Dirichlet process models.

To build a Gibbs sampler for a model with a Dirichlet
process prior, we find an expression for the conditional
distribution pðgi j g�i; xÞ. This allows us to specify a Gibbs
sampler in which we repeatedly sweep through all of the
observations, reassigning the group variable gi by sampling
from this distribution. This results in a sequence of
sampled assignment vectors g that form an Markov chain
that converges to samples from pðg jxÞ. In this approach,
we have integrated out the h variables, so the Gibbs
sampler does not provide samples from the joint posterior
pðg; h jxÞ. However, since the joint distribution can be
factorized into

pðg; h jxÞ ¼ pðh j g; xÞ pðg jxÞ,

it is simple enough to generate samples from the joint
distribution by also drawing samples from pðh j g;xÞ. This
distribution is straightforward to specify, firstly by noting
that since the draws from the base distribution are
independent. Therefore,

pðh j g;xÞ ¼
Y
z2Q�

pðyz j g;xÞ,

where Q� refers to the set of k�i currently nonempty
groups. Secondly, we can write pðyz j g;xÞ as the posterior
distribution,

pðyz j g;xÞ / pðg;x j yzÞ pðyz jbÞ

/
Y

i j gi¼z

pðxi j yzÞ

 !
p ðyz jbÞ,

where we have now reintroduced the dependence on b, the
parameter value that describes our base distribution.
Noting that the first term is a multinomial probability
and the second term is Dirichlet, we can use conjugacy to
infer that

yz j g;x;b�Dirichletð� jb�z Þ, (22)

where b�z ¼ bþ
P

i j gi¼z xi.
We now turn to the derivation for the conditional

distribution over the group assignments. However, it is
important to note that our model employs a mixture of
Dirichlet processes, in which a prior over a is employed.
Accordingly, our Gibbs sampler needs to sweep through
the group assignment variables and the dispersion variable.
We will begin by finding an expression for pðgi ¼

z j g�i; a;xÞ, the posterior probability that the ith partici-
pant is assigned to the group z, given some values for the
other group assignment variables and a value for the
dispersion (we will come back to the question of
resampling the dispersion in a moment). Using Bayes’
rule, we can write

pðgi ¼ z j g�i; a;xÞ / pðgi ¼ z j g�i; aÞ

� pðxi j gi ¼ z; g�i; x�iÞ

The first term gives the prior probability that a new sample
gi from the Dirichlet process belongs to group z, where z

may refer to a member of the set Q� of k�i currently
nonempty groups, or it may refer to one of the infinite set Q
of currently empty groups. Using the conditional distribu-
tions described in Eqs. (10) and (11),

pðgi ¼ z j g�i; aÞ /
s�i;z

n�1þa if gi 2 Q�;
a

n�1þa otherwise;

(
(23)

where s�i;z counts the number of subjects (not including the
ith) that are currently assigned to group z. This is a
legitimate approach since samples from the CRP distribu-
tion are exchangeable; so for the purposes of the Gibbs
sampling procedure we can always treat the ith observation
as if it were in fact the last (or nth) one.
The second term pðxi j gi ¼ z; g�i;x�iÞ is the likelihood of

the ith participant’s data, assuming they belong to group z.

http://www.kdd.ics.uci.edu/
http://www.kdd.ics.uci.edu/
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This can be written,

pðxi j gi ¼ z; g�i;x�iÞ

¼

Z
pðxi j yzÞpðyz j g�i;x�i; gi ¼ zÞ dyz

/

Z Ym
h¼1

ðyzhÞ
xih

Gðmbþ q�i;zÞQm
h¼1 Gðbþ q�i;z;hÞ

�

�
Ym
h¼1

ðyzhÞ
ðb�1þq�i;z;hÞ

!
dyz

¼
Gðmbþ q�i;zÞQm
h¼1 Gðbþ q�i;z;hÞ

Qm
h¼1 Gðbþ q�;z;hÞ

Gðmbþ q�;zÞ
,

where the second line uses Eq. (22). In this expression q�i;z;h

denotes the number of times that a participant (not
including the ith) currently assigned to group j made
response h, and q�i;z denotes the total number of responses
made by these subjects. The terms q�;z;h and q�;z are defined
similarly, except that the ith subject’s data are not
excluded. Taking these results together, the required
conditional posterior probability is given by,

pðgi ¼ z j g�i; a;xÞ

/

Gðmbþq�i;zÞQm

h¼1
Gðbþq�i;z;hÞ

Qm

h¼1
Gðbþq�;z;hÞ

Gðmbþq�;zÞ

s�i;z

n�1þa if gi 2 Q�;

GðmbÞQm

h¼1
GðbÞ

Qm

h¼1
Gðbþq�;z;hÞ

Gðmbþq�;zÞ
a

n�1þa otherwise:

8>>><
>>>:

ð24Þ

We can use Eq. (24) to draw Gibbs samples for the group
assignment variables. However, since we are using a
Dirichlet process mixture, we also need to resample a.
Throughout this paper, we treat the prior over a as an
inverse Gammað� j a; bÞ distribution. Using Antoniak’s
(1974) results, the conditional posterior over a depends
only on the number of observed groups k and the sample
size n, not the specific data or the group assignments. Thus,
by expanding the Beta function Bða; nÞ in Eq. (20) we
observe that

pða j g;xÞ ¼ pða j k; nÞ

/ aaþk�1e�ba
Z 1

0

Za�1ð1� ZÞn�1 dZ.

Since this conditional distribution is difficult to directly
sample from, it is convenient to employ a ‘‘data augmenta-
tion’’, in which we view pða j g; xÞ as the marginalization
over Z of the joint distribution,

pða; Z j k; nÞ / aaþk�1e�baZa�1ð1� ZÞn�1.

This approach comes from Escobar and West (1995).
Using this joint distribution, we can find pða j Z; k; nÞ and
pðZ j a; k; nÞ. These distributions are simply,

a j Z; k; n�Gammað� j aþ k � 1; b� ln ZÞ,

Z j a; k; n�Betað� j a; nÞ. ð25Þ

Eqs. (24) and (25) define the Gibbs sampler. On every
iteration of the Gibbs sampler, we sweep through all the
group assignments gi, sampling them from their condi-
tional distributions, as well as the dispersion a and the
dummy variable Z. Over time, these converge to samples
from the full posterior distribution pðg; a jxÞ, where
convergence can be measured in a number of ways (see
Cowles & Carlin, 1996). Given this distribution, it is
straightforward to make other inferences such as pðk jxÞ.
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