
Particle Filtering for Nonparametric
Bayesian Matrix Factorization

Frank Wood
Department of Computer Science

Brown University
Providence, RI 02912

fwood@cs.brown.edu

Thomas L. Griffiths
Department of Psychology

University of California, Berkeley
Berkeley, CA 94720

tom griffiths@berkeley.edu

Abstract

Many unsupervised learning problems can be expressed as a form of matrix fac-
torization, reconstructing an observed data matrix as the product of two matrices
of latent variables. A standard challenge in solving these problems is determining
the dimensionality of the latent matrices. Nonparametric Bayesian matrix factor-
ization is one way of dealing with this challenge, yielding aposterior distribution
over possible factorizations of unbounded dimensionality. A drawback to this ap-
proach is that posterior estimation is typically done usingGibbs sampling, which
can be slow for large problems and when conjugate priors cannot be used. As an
alternative, we present a particle filter for posterior estimation in nonparametric
Bayesian matrix factorization models. We illustrate this approach with two matrix
factorization models and show favorable performance relative to Gibbs sampling.

1 Introduction

One of the goals of unsupervised learning is to discover the latent structure expressed in observed
data. The nature of the learning problem will vary dependingon the form of the data and the kind of
latent structure it expresses, but many unsupervised learning problems can be viewed as a form of
matrix factorization – i.e. decomposing an observed data matrix, X, into the product of two or more
matrices of latent variables. IfX is anN × D matrix, whereN is the number ofD-dimensional
observations, the goal is to find a low-dimensional latent feature space capturing the variation in the
observations making upX. This can be done by assuming thatX ≈ ZY, whereZ is a N × K
matrix indicating which of (and perhaps the extent to which)K latent features are expressed in each
of theN observations andY is aK ×D matrix indicating how thoseK latent features are manifest
in theD dimensional observation space. Typically,K is less thanD, meaning thatZ andY provide
an efficient summary of the structure ofX.

A standard problem for unsupervised learning algorithms based on matrix factorization is determin-
ing the dimensionality of the latent matrices,K. Nonparametric Bayesian statistics offers a way to
address this problem: instead of specifyingK a priori and searching for a “best” factorization, non-
parametric Bayesian matrix factorization approaches suchas those in [1] and [2] estimate a posterior
distribution over factorizations with unbounded dimensionality (i.e. lettingK → ∞). This remains
computationally tractable because each model uses a prior that ensures thatZ is sparse, based on
the Indian Buffet Process (IBP) [1]. The search for the dimensionality of the latent feature matrices
thus becomes a problem of posterior inference over the number of non-empty columns inZ.

Previous work on nonparametric Bayesian matrix factorization has used Gibbs sampling for poste-
rior estimation [1, 2]. Indeed, Gibbs sampling is the standard inference algorithm used in nonpara-
metric Bayesian methods, most of which are based on the Dirichlet process [3, 4]. However, recent

work has suggested that sequential Monte Carlo methods suchas particle filtering can provide an
efficient alternative to Gibbs sampling in Dirichlet process mixture models [5, 6].

In this paper we develop a novel particle filtering algorithmfor posterior estimation in matrix fac-
torization models that use the IBP, and illustrate its applicability to two specific models – one with
a conjugate prior, and the other without a conjugate prior but tractable in other ways. Our particle
filtering algorithm is by nature an “on-line” procedure, where each row ofX is processed only once,
in sequence. This stands in comparison to Gibbs sampling, which must revisit each row many times
to converge to a reasonable representation of the posteriordistribution. We present simulation results
showing that our particle filtering algorithm can be significantly more efficient than Gibbs sampling
for each of the two models, and discuss its applicability to the broad class of nonparametric matrix
factorization models based on the IBP.

2 Nonparametric Bayesian Matrix Factorization

Let X be an observedN × D matrix. Our goal is to find a representation of the structure expressed
in this matrix in terms of the latent matricesZ (N × K) andY (K × D). This can be formulated
as a statistical problem if we viewX as being produced by a probabilistic generative process, re-
sulting in a probability distributionP (X|Z,Y). The critical assumption necessary to make this a
matrix factorization problem is that the distribution ofX is conditionally dependent onZ andY
only through the productZY. Although definingP (X|Z,Y) allows us to use methods such as
maximum-likelihood estimation to find a point estimate, ourgoal is to instead compute a posterior
distribution over possible values ofZ andY. To do so we need to specify a prior over the latent
matricesP (Z,Y), and then we can use Bayes’ rule to find the posterior distribution overZ andY

P (Z,Y|X) ∝ P (X|Z,Y)P (Z,Y). (1)

This constitutes Bayesian matrix factorization, but two problems remain: the choice ofK, and the
computational cost of estimating the posterior distribution.

Unlike standard matrix factorization methods that requirean a priori choice ofK, nonparametric
Bayesian approaches allow us to estimate a posterior distribution overZ andY where the size of
these matrices is unbounded. The models we discuss in this paper place a prior onZ that gives each
“left-ordered” binary matrix (see [1] for details) probability

P (Z) =
αK+

∏2N
−1

h=1 Kh!
exp{−αHN}

K+
∏

k=1

(N − mk)!(mk − 1)!

N !
(2)

whereK+ is the number of columns ofZ with non-zero entries,mk is the number of1’s in column
k, N is the number of rows,HN =

∑N
i=1 1/i is theN th harmonic number, andKh is the number

of columns inZ that when read top-to-bottom form a sequence of1’s and0’s corresponding to the
binary representation of the numberh. This prior onZ is a distribution on sparse binary matrices
that favors those that have few columns with many ones, with the rest of the columns being all zeros.

This distribution can be derived as the outcome of a sequential generative process called theIndian
buffet process(IBP) [1]. Imagine an Indian restaurant into whichN customers arrive one by one and
serve themselves from the buffet. The first customer loads her plate from the first Poisson(α) dishes.
The ith customer chooses dishes proportional to their popularity,choosing a dish with probability
mk/i wheremk is the number of people who have choosen thekth dish previously, then chooses
Poisson(α/i) new dishes. If we record the choices of each customer on one row of a matrix whose
columns correspond to a dishes on the buffet (1 if chosen,0 if not) then (the left-ordered form of)
that matrix constitutes a draw from the distribution in Eqn.2. The order in which the customers enter
the restaurant has no bearing on the distribution ofZ (up to permutation of the columns), making
this distribution exchangeable.

In this work we assume thatZ andY are independent, withP (Z,Y) = P (Z)P (Y). As shown in
Fig. 1, since we use the IBP prior forP (Z), Y is a matrix with an infinite number of rows andD
columns. We can take any appropriate distribution forP (Y), and the infinite number of rows will
not pose a problem because onlyK+ rows will interact with non-zero elements ofZ. A posterior
distribution overZ andY implicitly defines a distribution over the effective dimensionality of these

~
*

Z YX 1

1

D

N

K+

D

N

Figure 1: Nonparametric Bayesian matrix factorization. The data matrixX is the product ofZ and
Y, which have an unbounded number of columns and rows respectively.

matrices, throughK+. This approach to nonparametric Bayesian matrix factorization has been used
for both continuous [1, 7] and binary [2] data matricesX.

Since the posterior distribution defined in Eqn. 1 is generally intractable, Gibbs sampling has pre-
viously been employed to construct a sample-based representation of this distribution. However,
generally speaking, Gibbs sampling is slow, requiring eachentry inZ andY to be repeatedly up-
dated conditioned on all of the others. This problem is compounded in contexts where the the
number of rows ofX increases as a consequence of new observations being introduced, where the
Gibbs sampler would need to be restarted after the introduction of each new observation.

3 Particle Filter Posterior Estimation

Our approach addresses the problems faced by the Gibbs sampler by exploiting the fact that the prior
on Z is recursively decomposable. To explain this we need to introduce new notation, letX(i) be
the ith row of X, andX(1:i) andZ(1:i) be all the rows ofX andZ up to i respectively. Note that
because the IBP prior is recursively decomposable it is easyto sample fromP (Z(1:i)|Z(1:i−1)); to
do so simply follow the IBP in choosing dishes for theith customer given the record of which dishes
were chosen by the firsti − 1 customers (see Algorithm 1). Applying Bayes’ rule, we can write the
posterior onZ(1:i) andY givenX(1:i) in the following form

P (Z(1:i),Y|X(1:i)) ∝ P (X(i)|Z(1:i),Y,X(1:i−1))P (Z(1:i),Y|X(1:i−1)). (3)

Here we do not indexY as it is always an infinite matrix.1

If we could evaluateP (Z(1:i−1),Y|X(1:i−1)), we could obtain weighted samples (or “particles”)
from P (Z(1:i),Y|X(1:i)) using importance sampling with a proposal distribution of

P (Z(1:i),Y|X(1:i−1)) =
∑

Z(1:i−1)

P (Z(1:i)|Z(1:i−1))P (Z(1:i−1),Y|X(1:i−1)) (4)

and taking
wℓ ∝ P (X(i)|Z

(1:i)
(ℓ) ,Y(ℓ),X

(1:i−1)) (5)

as the weight associated with theℓth particle. However, we could also use a similar
scheme to approximateP (Z(1:i−1),Y|X(1:i−1)) if we could evaluateP (Z(1:i−2),Y|X(1:i−2)).
Following Eq. 4, we could then approximately generate a set of weighted particles from
P (Z(1:i),Y|X(1:i−1)) by using the IBP to sample a value fromP (Z(1:i)|Z

(1:i−1)
(ℓ)) for each parti-

cle fromP (Z(1:i−1),Y|X(1:i−1)) and carrying forward the weights associated with those particles.
This “particle filtering” procedure defines a recursive importance sampling scheme for the full pos-
terior P (Z,Y|X), and is known as sequential importance sampling [8]. When applied in its basic
form this procedure can produce particles with extreme weights, so we resample the particles at each
iteration of the recursion from the distribution given by their normalized weights and setwℓ = 1/L
for all ℓ, which is a standard method known as sequential importance resampling [8].

The procedure defined in the previous paragraphs is a general-purpose particle filter for matrix-
factorization models based on the IBP. This procedure will work even when the prior defined on

1In practice, we need only keep track of the rows ofY that correspond to the non-empty columns ofZ, as
the posterior distribution for the remaining entries is just the prior. Thus, if new non-empty columns are added
in moving fromZ

(i−1) to Z
(i), we need to expand the number of rows ofY that we represent accordingly.

Algorithm 1 SampleP (Z(1:i)|Z(1:i−1), α) using the Indian Buffet process

1: Z← Z
(1:i−1)

2: if i = 1 then
3: sampleKnew

i ∼ Poisson(α)
4: Zi,1:Knew

i
← 1

5: else
6: K+ ← number of non-zero columns inZ
7: for k = 1, . . . , K+ do
8: samplezi,k according toP (zi,k = 1) ∼ Bernoulli(

m
−i,k

i
)

9: end for
10: sampleKnew

i ∼ Poisson(α

i
)

11: Zi,K++1:K++Knew
i
← 1

12: end if
13: Z

(1:i) ← Z

Y is not conjugate to the likelihood (and is much simpler than other algorithms for using the IBP
with non-conjugate priors, e.g. [9]). However, the procedure can be simplified further in special
cases. The following example applications illustrate the particle filtering approach for two different
models. In the first case, the prior overY is conjugate to the likelihood which means thatY need
not be represented. In the other case, although the prior is not conjugate and thusY does need to be
explicitly represented, we present a way to improve the efficiency of this general particle filtering
approach by taking advantage of certain analytic conditionals. The particle filtering approach results
in significant improvements in performance over Gibbs sampling in both models.

4 A Conjugate Model: Infinite Linear-Gaussian Matrix Factor ization

In this model, explained in detail in [1], the entries of bothX andY are continuous. We report
results on the modeling of image data of the same kind as was originally used to demonstrate the
model in [1]. Here each row ofX is an image, each row ofZ indicates the “latent features” present
in that image, such as the objects it contains, and each column of Y indicates the pixel values
associated with a latent feature.

The likelihood for this image model is matrix Gaussian

P (X|Z,Y, σx) =
1

(2πσ2
X)ND/2

exp{−
1

2σ2
X

tr((X − ZY)T (X − ZY))}

whereσ2
X is the noise variance. The prior on the parameters of the latent features is also Gaussian

P (Y|σY) =
1

(2πσ2
Y)KD/2

exp{−
1

2σ2
Y

tr(YT Y)}

with each element having varianceσ2
Y . Because both the likelihood and the prior are matrix Gaus-

sian, they form a conjugate pair andY can be integrated out to yield the collapsed likelihood,

P (X|Z, σx) =
1

(2π)ND/2σ
(N−K+)D
X σ

K+D
Y |ZT

+Z+
σ2

X

σ2
Y

IK+ |
D/2

exp{−
1

2σ2
X

tr(XT Σ−1X)} (6)

which is matrix Gaussian with covarianceΣ−1 = I − Z+(ZT
+Z +

σ2
X

σ2
Y

IK+)−1ZT
+. HereZ+ =

Z1:i,1:K+ is the firstK+ columns ofZ andK+ is the number of non-zero columns ofZ.

4.1 Particle Filter

The use of a conjugate prior means that we do not need to representY explicitly in our particle filter.
In this case the particle filter recursion shown in Eqns. 3 and4 reduces to

P (Z(1:i)|X(1:i)) ∝ P (X(i)|Z(1:i),X(1:i−1))
∑

Z(1:i−1)

P (Z(1:i)|Z(1:i−1))P (Z(1:i−1)|X(1:i−1))

and may be implemented as shown in Algorithm 2.

Algorithm 2 Particle filter for Infinite Linear Gaussian Model

1: initializeL particles[Z(0)
ℓ], ℓ = 1, . . . , L

2: for i = 1, . . . , N do
3: for ℓ = 1, . . . , L do
4: sampleZ(1:i)

ℓ from Z
(1:i−1)
ℓ using Algorithm 1

5: calculatewℓ using Eqns. 5 and 7
6: end for
7: normalize particle weights
8: resample particles according to weight cumulative distribution
9: end for

 y
1,:

 y
2,:

 y
3,:

 y
4,:

 z
(i,:)

Y noise x
i,:

Figure 2: Generation ofX under the linear Gaussian model. The first four images (left to right)
correspond to the true latent features, i.e. rows ofY. The fifth shows how the images get combined,
with two source images added together by multiplying by a single row ofZ, zi,: = [1 0 0 1]. The
sixth is Gaussian noise. The seventh image is the resulting row of X.

Reweighting the particles requires computingP (X(i)|Z(1:i),X(1:i−1)), the conditional probability
of the most recent row ofX given all the previous rows andZ. SinceP (X(1:i)|Z(1:i)) is matrix
Gaussian we can find the required conditional distribution by following the standard rules for con-
ditioning in Gaussians. LettingΣ−1

∗
= Σ−1/σ2

X be the covariance matrix forX(1:i) givenZ(1:i),
we can partition this matrix into four parts

Σ−1
∗

=

[

A c

cT b

]

whereA is a matrix,c is a vector, andb is a scalar. Then the conditional distribution ofX(i) is

X(i)|Z(1:i),X(1:i−1) ∼ Gaussian(cT A−1X(1:i−1), b − cT A−1c). (7)

This requires inverting a matrixA which grows linearly with the size of the data; however,A is
highly structured and this can be exploited to reduce the cost of this inversion [10].

4.2 Experiments

We compared the particle filter in Algorithm 2 with Gibbs sampling on an image dataset similar
to that used in [1]. Due to space limitations we refer the reader to [1] for the details of the Gibbs
sampler for this model. As illustrated in Fig. 2, our ground-truth Y consisted of four different
6 × 6 latent images. A100 × 4 binary ground-truth matrixZ was generated with by sampling from
P (zi,k = 1) = 0.5. The observed matrixX was generated by adding Gaussian noise withσX = 0.5
to each entry ofZY.

Fig. 3 compares results from the particle filter and Gibbs sampler for this model. The performance of
the models was measured by comparing a general error metric computed over the posterior distribu-
tions estimated by each approach. The error metric (the vertical axis in Figs. 3 and 5) was computed
by taking the expectation of the matrixZZT over the posterior samples produced by each algorithm
and taking the summed absolute difference (i.e.L1 norm) between the upper triangular portion of
E[ZZT] computed over the samples and the upper triangular portion of the trueZZT (including
the diagonal). See Fig. 4 for an illustration of the information conveyed byZZT . This error metric
measures the distance of the mean of the posterior to the ground-truth. It is zero if the mean of the
distribution matches the ground truth. It grows as a function of the difference between the ground
truth and the posterior mean, accounting both for any difference in the number of latent factors that
are present in each observation and for any difference in thenumber of latent factors that are shared
between all pairs of observations.

The particle filter was run using many different numbers of particles,P . For each value ofP , the
particle filter was run 10 times. The horizontal axis location of each errorbar in the plot is the mean

0

1000

2000

3000

4000

5000

1

10 10
0

10
00

25
00

50
00

10
00

0

25
00

0

50
00

0

E
rr

or

Wallclock runtime in sec.

Gibbs Sampler
Particle Filter

Figure 3: Performance results for particle filter vs. Gibbs sampling posterior estimation for the
infinite linear Gaussian matrix factorization. Each point is an average over 10 runs with a particular
number of particles or sweeps of the samplerP = [1, 10, 100, 500, 1000, 2500, 5000] left to right,
and error bars indicate the standard deviation of the error.

wall-clock computation time on 2 Ghz Athlon 64 processors running Matlab for the corresponding
number of particlesP while the error bars indicate the standard deviation of the error. The Gibbs
sampler was run for varying numbers of sweeps, with the initial 10% of samples being discarded.
The number of Gibbs sampler sweeps was varied and the resultsare displayed in the same way as
described for the particle filter above. The results show that the particle filter attains low error in
significantly less time than the Gibbs sampler, with the difference being an order or magnitude or
more in most cases. This is a result of the fact that the particle filter considers only a single row of
X on each iteration, reducing the cost of computing the likelihood.

5 A Semi-Conjugate Model: Infinite Binary Matrix Factorizat ion

In this model, first presented in the context of learning hidden causal structure [2], the entries of
bothX andY are binary. Each row ofX represents the values of a single observed variable across
D trials or cases, each row ofY gives the values of a latent variable (a “hidden cause”) across those
trials or cases, andZ is the adjacency matrix of a bipartite Bayesian network indicating which latent
variables influence which observed variables. Learning thehidden causal structure then corresponds
to inferringZ andY from X. The model fits our schema for nonparametric Bayesian matrixfactor-
ization model (and hence is amenable to the use of our particle filter) since the likelihood function
it uses depends only on the productZY.

The likelihood function for this model assumes that each entry of X is generated independently
P (X|Z,Y) =

∏

i,d P (xi,d|Z,Y), with its probability given by the “noisy-OR” [11] of the causes
that influence that variable (identified by the corresponding row ofZ) and are active for that case or
trial (expressed inY). The probability thatxi,d takes the value1 is thus

P (xi,d = 1|Z,Y) = 1 − (1 − λ)zi,:·y:,d(1 − ǫ) (8)

wherezi,: is the ith row of Z, y:,d is thedth column ofY, andzi,: · y:,d =
∑K

k=1 zi,kyk,d. The
parameterǫ sets the probability thatxi,d = 1 when no relevant causes are active, andλ determines
how this probability changes as the number of relevant active hidden causes increases. To complete
the model, we assume that the entries ofY are generated independently from a Bernoulli process
with parameterp, to giveP (Y) =

∏

k,d pyk,d(1 − p)1−yk,d , and use the IBP prior forZ.

5.1 Particle Filter

In this model the prior overY is not conjugate to the likelihood, so we are forced to explicitly
representY in our particle filter state, as outlined in Eqns. 3 and 4. However, we can define a more
efficient algorithm than the basic particle filter due to the tractability of some integrals. This is why
we call this model a “semi-conjugate” model.

The basic particle filter defined in Section 3 requires drawing the new rows ofY from the prior
when we generate new columns ofZ. This can be problematic since the chance of producing an
assignment of values toY that has high probability under the likelihood can be quite low, in effect
wasting many particles. However, if we can analytically marginalize out the new rows ofY, we
can avoid sampling those values from the prior and instead sample them from the posterior, in

Algorithm 3 Particle filter for Infinite Binary Matrix Factorization

1: initializeL particles[Z(0)
ℓ ,Y

(0)
ℓ], ℓ = 1, . . . , L

2: for i = 1, . . . , N do
3: for ℓ = 1, . . . , L do
4: sampleZ(i)

ℓ from Z
(i−1)
ℓ using Algorithm 1

5: calculatewℓ using Eqns. 5 and 8
6: end for
7: normalize particle weights
8: resample particles according to weight CDF
9: for ℓ = 1, . . . , L do

10: sampleY(i)
ℓ from P (Y

(i)
ℓ |Z

(1:i)
ℓ ,Y

(1:i−1)
ℓ ,X(1:i))

11: end for
12: end for

Figure 4: Infinite binary matrix factorization results. On the left is ground truth, the causal graph
representation ofZ andZZT . The middle and right are particle filtering results; a single random
particleZ andE[ZZT] from a 500 and 10000 particle run middle and right respectively.

effect saving many of the potentially wasted particles. If we letY(1:i) denote the rows ofY that
correspond to the firsti columns ofZ andY(i) denote the rows (potentially more than 1) ofY that
are introduced to match the new columns appearing inZ(i), then we can write

P (Z(1:i),Y(1:i)|X(1:i)) = P (Y(i)|Z(1:i),Y(1:i−1),X(1:i))P (Z(1:i),Y(1:i−1)|X(1:i)) (9)

where

P (Z(1:i),Y(1:i−1)|X(1:i)) ∝ P (X(i)|Z(1:i),Y(1:i−1),X(1:i−1))P (Z(1:i),Y(1:i−1)|X(1:i−1)).
(10)

Thus, we can use the particle filter to estimateP (Z(1:i),Y(1:i−1)|X(1:i))
(vs.P (Z(1:i),Y(1:i)|X(1:i))) provided that we can find a way to computeP (X(i)|Z(1:i),Y(1:i−1))
and sample from the distributionP (Y(i)|Z(1:i),Y(1:i−1),X(1:i)) to complete our particles.

The procedure described in the previous paragraph is possible in this model because, while our prior
onY is not conjugate to the likelihood, it is still possible to computeP (X(i)|Z(1:i),Y(1:i−1)). The
entries ofX(i) are independent givenZ(1:i) andY(1:i). Since the entries in each column ofY(i) will
influence only a single entry inX(i), this independence is maintained when we sum outY(i). So we
can derive an analytic solution toP (X(i)|Z(1:i),Y(1:i−1)) =

∏

d P (xi,d|Z
(1:i),Y(1:i−1)) where

P (xi,d = 1|Z(1:i),Y(1:i−1)) = 1 − (1 − ǫ)(1 − λ)η (1 − λp)Knew
i (11)

with Knew
i being the number of new columns inZ(i), andη = z

i,1:K
(1:i)
+

· y
1:K

(1:i)
+ ,d

. For a detailed

derivation see [2]. This gives us the likelihood we need for reweighting particlesZ(1:i) andY(1:i−1).
The posterior distribution onY(i) is straightforward to compute by combining the likelihood in
Eqn. 8 with the priorP (Y). The particle filtering algorithm for this model is given in Algorithm 3.

5.2 Experiments

We compared the particle filter in Algorithm 3 with Gibbs sampling on a dataset generated from the
model described above, using the same Gibbs sampling algorithm and data generation procedure
as developed in [2]. We tookK+ = 4 andN = 6, running the IBP multiple times withα = 3
until a matrixZ of correct dimensionality (6× 4) was produced. This matrix is shown in Fig. 4 as a
bipartite graph, where the observed variables are shaded. A4×250 random matrixY was generated
with p = 0.1. The observed matrixX was then sampled from Eqn. 8 with parametersλ = .9
andǫ = .01. Comparison of the particle filter and Gibbs sampling was done using the procedure
outlined in Section 4.2, producing similar results: the particle filter gave a better approximation to
the posterior distribution in less time, as shown in Fig. 5.

0

10

20

30

40

50

0
.2

5

0
..5 1 2 5

1
0 5
0

1
0
0

5
0
0

E
rr

o
r

Wallclock runtime in sec.

Gibbs Sampler
Particle Filter

Figure 5: Performance results for particle filter vs. Gibbs sampling posterior estimation for the
infinite binary matrix factorization model. Each point is anaverage over 10 runs with a particular
number of particles or sweeps of the samplerP = [1, 2, 5, 10, 20, 50, 100, 200, 500, 1000] from left
to right, and error bars indicate the standard deviation of the error.

6 Conclusion

In this paper we have introduced particle filter posterior estimation for non-parametric Bayesian
matrix factorization models based on the Indian buffet process. This approach is applicable to any
Bayesian matrix factorization model with a sparse recursively decomposable prior. We have applied
this approach with two different models, one with a conjugate prior and one with a non-conjugate
prior, finding significant computational savings over Gibbssampling for each. However, more work
needs to be done to explore the strengths and weakneses of these algorithms. In particular, simple
sequential importance resampling is known to break down when applied to datasets with many
observations, although we are optimistic that methods for addressing this problem that have been
developed for Dirichlet process mixture models (e.g., [5])will also be applicable in this setting.
By exploring the strengths and weaknesses of different methods for approximate inference in these
models, we hope to come closer to our ultimate goal of making nonparametric Bayesian matrix
factorization into a tool that can be applied on the scale of real world problems.

AcknowledgementsThis work was supported by both NIH-NINDS R01 NS 50967-01 as part of the NSF/NIH
Collaborative Research in Computational Neuroscience Program and NSF grant 0631518.

References

[1] T. L. Griffiths and Z. Ghahramani, “Infinite latent feature models and the Indian buffet process,” Gatsby
Computational Neuroscience Unit, Tech. Rep. 2005-001, 2005.

[2] F. Wood, T. L. Griffiths, and Z. Ghahramani, “A non-parametric Bayesian method for inferring hidden
causes,” inProceeding of the 22nd Conference on Uncertainty in Artificial Intelligence. in press, 2006.

[3] T. Ferguson, “A Bayesian analysis of some nonparametricproblems,”The Annals of Statistics, vol. 1, pp.
209–230, 1973.

[4] R. M. Neal, “Markov chain sampling methods for Dirichletprocess mixture models,” Department of
Statistics, University of Toronto, Tech. Rep. 9815, 1998.

[5] P. Fearnhead, “Particle filters for mixture models with an unknown number of components,”Journal of
Statistics and Computing, vol. 14, pp. 11–21, 2004.

[6] S. N. MacEachern, M. Clyde, and J. Liu, “Sequential importance sampling for nonparametric Bayes
models: the next generation,”The Canadian Journal of Statistics, vol. 27, pp. 251–267, 1999.

[7] T. Griffiths and Z. Ghahramani, “Infinite latent feature models and the Indian buffet process,” inAdvances
in Neural Information Processing Systems 18, Y. Weiss, B. Schölkopf, and J. Platt, Eds. Cambridge,
MA: MIT Press, 2006.

[8] A. Doucet, N. de Freitas, and N. Gordon,Sequential Monte Carlo Methods in Practice. Springer, 2001.

[9] D. Görür, F. Jäkel, and C. R. Rasmussen, “A choice model with infinitely many latent features,” inPro-
ceeding of the 23rd International Conference on Machine Learning, 2006.

[10] S. Barnett,Matrix Methods for Engineers and Scientists. McGraw-Hill, 1979.

[11] J. Pearl,Probabilistic reasoning in intelligent systems. San Francisco, CA: Morgan Kaufmann, 1988.

