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1. Introduction

Word segmentation, or identifying word boundaries in combus speech, is
one of the first problems that infants must solve as they agaiang language.
A number of different weak cues to word boundaries are ptésdluent speech,
and there is evidence that infants are able to use many d timeduding phono-
tactics (Mattys et al., 1999), allophonic variation (Jygcet al., 1999a), metrical
(stress) patterns (Morgan et al., 1995; Jusczyk et al.,i9@%ects of coarticula-
tion (Johnson and Jusczyk, 2001), and statistical regigdsi@mongst sequences
of syllables (Saffran et al., 1996a). The kinds of statitiegularities studied
by Saffran et al. (1996a) allow for the possibility of langeaindependent word
segmentation strategies, and seem to be used by infanier ¢han other kinds
of cues (Thiessen and Saffran, 2003). These facts have lix toroposal that
strategies exploiting the statistical patterns found imgbsequences are a crucial
first step in bootstrapping word segmentation (ThiessenSafilan, 2003), and
have provoked a great deal of research into statistical weginentation using
both human subjects and computational models.

Most previous work on statistical word segmentation is dasethe obser-
vation that transitions from one syllable or phoneme to thet tend to be less
predictable at word boundaries than within words (HarrBh3, Saffran et al.,
1996a). This observation has led to proposals that infasgsstatistics such
as transitional probabilities or mutual information in erdo segment words
from speech. A number of models have been developed in angttte explain
how these kinds of statistics can be used procedurally ttifgenvords or word
boundaries. Here, we take a different approach: we seeletdifgd the assump-
tions the learner must make about the nature of languagedier ¢o correctly
segment natural language input.

Observations about predictability at word boundaries arsistent with two
different kinds of assumptions about what constitute®ed: either a word is
a unit that is statistically independent of other units,tds ia unit that helps to
predict other units (but to a lesser degree than the begjrofia word predicts
its end). In most artificial language experiments on wordrsagtation, the first
assumption is adopted implicitly by creating stimuli thghuandom concatena-
tion of nonce words. In this paper, we use simulations to éxamearning from
natural, rather than artificial, language input. We ask wads of words are
identified by a learner who assumes that words are statlgtiodependent, or
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(alternatively) by a learner who assumes that words areafigrpredictive of
later words. We investigate this question by developing different Bayesian
models of word segmentation incorporating each of thesedifferent assump-
tions. We present the results of simulations using eaches&imodels to segment
a corpus of phonemically transcribed child-directed spe&ur simulations in-
dicate that a learner who assumes that words are statigticeependent units
will tend to undersegment the corpus, whereas assumingvtras predict other
words leads to a more accurate segmentation. These resgiiest that even in
the initial stages of acquisition, language learners maylie account for more
subtle statistical effects than have typically been disedsn the literature.

2. The Bayesian approach

Our approach differs from that of many other researcherg iwhestigate
the kinds of statistical information that humans are sesmsib (Saffran et al.,
1996b; Saffran et al., 1996a; Aslin et al., 1998; Johnson Arstzyk, 2001;
Thiessen and Saffran, 2003) or the kinds of architecturesadgorithms that
might emulate human learning (Christiansen et al., 1998aal 1990; Swing-
ley, 2005). We focus here on trying to identify some of theuagstions an ideal
learner must make about the nature of language in order tessfully solve the
word segmentation problem, in the spirit of Marr's (1982)mutational level
of analysis. In this case, the ideal learner uses Bayesfareimce to combine
expectations about the structure of language with the mm&bion provided by
linguistic data. A previous Bayesian model of word segmigortads presented in
Brent (1999); we discuss this model in more detail in Sec3idn Venkataraman
(2001) and Batchelder (2002) also propose models basedyssBa ideas, but
their goals are different (focusing on algorithmic desigther than the assump-
tions of the learner), and the algorithms they use introduigsificant learning
biases independent of their models.

To apply Bayesian learning to the domain of language, wenasghat the
learner is exposed to an input corpus of natural language.pfbcess of learn-
ing consists of determining some internalized represemtéé.g., a grammar or
lexicon) that provides a good explanation of how the obstdeata was gener-
ated, and also allows the learner to generate novel lingdissms. In a statistical
setting, we can state this idea formally using Bayes’ rule:

P(d|h)P(h)

POl = =5

o P(d|h)P(h)

whered is the observed data ahds the hypothesized gramma?(d|h) (known
as thelikelihood) is the probability of the observed data given a particular h
pothesis, and tells us how well that hypothesis explainsi#ta. P(1) (theprior
probability of h) tells us how good a linguistic hypothedgiss, regardless of any
data. The prior can be viewed as a learning bias: hypothegkshigh prior
probability may be adopted based on less evidence than tgpes with low
prior probability. Bayes’ rule states th&(h|d) (the posterior probability of i)

is proportional to the product of the likelihood and the pnwith P(d) (the prob-
ability of the data) acting as a normalizing constant to em$inatP(h|d) sums



to one over all hypotheses. The learner can compare therfpogtebabilities of
different hypotheses by evaluating each one accordings texpplanatory power
(likelihood) and the learner’s prior expectations.

Before defining a Bayesian model of word segmentation, we rieed to
decide what units of representation will be used. In the nsodescribed here,
the input is represented in terms of phonemes, and the octpsists of words
(which are sequences of phonemes). Neither of these repatisas is uncon-
troversial; on the output side, for example, connecticeygiroaches typically do
not learn or represent words explicitly; instead, they atitppundary prediction
probabilities, from which words may be reconstructed. V¢ tieat explicit iden-
tification and representation of words is important, simegers must eventually
assign meanings to words and recombine them in novel waygorAke input
side, Swingley (2005) argues in favor of a syllable-basguiimepresentation,
while the connectionist model of Christiansen et al. (198&s a distributed rep-
resentation based on phonetic features. The phoneme-ippsedepresentation
we have chosen makes our model insensitive to feature-lsamddrity between
sounds, and also abstracts away from many details of plecaredi acoustic vari-
ation. Nevertheless, it is useful because it allows us tdhsesame input corpus
as several previous researchers (Brent, 1999; Venkatara2081; Batchelder,
2002), and compare our results directly to theirs. In tharitwe plan to work
towards using input data with more phonetic detail.

With this choice of input and output representations, we foamulate the
problem of word segmentation in Bayesian terms as followsrgan input cor-
pusd of unsegmented utterances (i.e., strings of phonemed),legmthesis:
consists of a possible segmentation of the corpus into wdrke learner’s task
is to identify the posterior distribution of segmentatigingen the observed data
(or perhaps to choose a single high-probability segmemtatNotice that in this
particular taskP(d|h) is always 1, because for any particular segmentation, the
observed data can be generated deterministically by sioguigatenating all the
words in the segmentation. Therefore, the posterior pridhabf a segmenta-
tion is directly proportional to its prior probability. Intleer words, the learner
will prefer exactly those segmentations that best matchehmer's concept of
linguistic naturalness.

Using this kind of Bayesian framework, we can examine thdiof assump-
tions that lead to successful learning by developing difiemodels that define
“naturalness” in different ways. Here, we consider two typé learners that
make different assumptions about how words behave in dturguage. One
type of learner assumes that the probability of observinagrdqular word is sta-
tistically independent of its context (or, equivalenthat all orderings of a given
set of words are equally probable). While this assumptieanty does not hold
true for natural language, it yields an intuitively simplenceptual approach to
word segmentation which can be roughly stated as “look fdependent units of
speech and identify these as words”. The assumption ottafiindependence
between words is known in computational linguistics asigram assumption,
because the probability of a corpus can be computed by nviftgptogether
the probabilities of its unigrams, or individual words. Wélwefer to learners
making this assumption as unigram learners.



The second type of learner we consider here treats wordsnotlapendent
units, but as predictive units. This type of learner assuthasthe probability
of a worddoes depend on its context: words provide information that can be
used to help predict future words. There are, of course, mays in which
context could be used to help predict words; the learner we baveloped is
based on the simplifying assumption that a word’s probighidiaffected by only
one preceding word of context. That is, each word can be asieelp predict the
following word, but has no statistical effect upon later dsr This assumption
is known as aigram assumption, because frequencies of bigrams, or pairs of
words, must be used when computing the probability of a carpMe describe
our bigram learner in more detail in Section 4, but first wenttar the simpler
case of unigram word segmentation.

3. Unigram word segmentation
3.1. Model description

To motivate our unigram model of word segmentation, we lyriedview
a previous Bayesian model of word segmentation describegrémt (1999).
Brent’'s model assumes that the goal of the learner is toifgethe segmenta-
tion of the input corpus with the highest posterior prokibilAs in our own
model, this is equivalent to finding the segmentation withhighest prior prob-
ability. Under Brent's model, the prior probability of a segntation is defined
in terms of four properties of that segmentation: the nunaetistinct lexical
types in the segmentation, the phonemic form of each typdréguency of each
type, and the probability of the particular ordering of wéolens found in that
segmentation. Crucially, this model assumes a uniformridigton over token
orderings, so that the probability of any ordering of a aiftir set of tokens is
the same as the probability of any other ordering. Since wadldr is irrelevant,
this is a unigram learner.

Here, we propose a new unigram Bayesian model of word segutieamtOur
model has some deep mathematical similarities to Brent'dehdut has two
major advantages over his model. First, in Brent’s framéwibis not clear how
to replace the learner’s unigram assumption with the assamghat context is
important. Our own framework makes this relatively easytts we are able
to develop both unigram and bigram models, and compare thdtse A sec-
ond problem with Brent's model is that there is no known athon that can
efficiently identify the best segmentation of the input. Rbtbut the tiniest cor-
pora, choosing the best segmentation by exhaustively atnaguthe probability
of every possible segmentation would be infeasible. ImstBaent describes an
approximate algorithm that is intended to identify a relatively highspability
segmentation, but has no guarantees of optimality. It totrigas we show in
Section 3.2) that the segmentations found by this algoraheractually far from
optimal under Brent's model. In contrast, there are welthkn techniques for
finding near-optimal solutions under models like ours, aedonovide evidence
that the algorithm we use does identify these solutions.

In our model, as in Brent's, the learner assumes that therodddunseg-
mented) corpus was created according to a probabilistiergée process. The



specifics of this process, and thus the probabilities assigny the model to dif-
ferent segmentations, are somewhat different from Bre@isr model assumes
that the corpus was generated by generating a sequence @ wor. . wy in
order and then removing the boundaries between the woFtieith word in the
sequencey;, is generated as follows:

(1) Decide ifw; is a novel lexical item.

(2) a. Ifso, generate a phonemic form (phonemes . x ;) for w;.
b. If not, choose an existing lexical forbior w;.

Since this is a probabilistic process, we must assign piititiadto each possible
choice. We do so as follows:

(1) P(w;isnove) = P(w; is notnove] = -2

nto
@) a P(w;=a1...2x|w;isnove) = [[}L, P(x;)
b. P(w; = 1| w; is not nove) = %

e
n+ao’

where« is a parameter of the model, is the number of previously generated
words & ¢ — 1), andn; is the number of times lexical itefinhas occurred in
thosen words. This model is known in Bayesian statistics as a Digighrocess
(Ferguson, 1973).

We now provide some intuition for the assumptions that aiiét imio this
model. First, notice that in Step 1, wheris small, the probability of generating
a novel lexical item is fairly large. As more word tokens asngrated ane
increases, the relative probability of generating a ndeehidecreases, but never
disappears entirely. This part of the model means that se@tiens with too
many different lexical items will have low probability, priding pressure for the
learner to identify a segmentation consisting of relagifelv lexical items. In
Step 2a, we define the probability of a novel lexical item a&sphoduct of the
probabilities of each of its phonemes. This ensures that legig lexical items
will be strongly dispreferred. Finally, in Step 2b, we sagttithe probability
of generating an instance of the lexical itéris proportional to the number of
times!/ has already occurred. In effect, the learner assumes theat dekical
items will tend to occur very frequently, while most will agconly once or
twice. In particular, our model assigns high probabilitysegmentations where
the frequencies of lexical items follow a power-law (Zipfiadistribution, the
kind of distribution that is found in natural language (@tiifs, 2006).

3.2. Simulations

All of the simulations described in this paper were perfadroe the same
corpus used by Brent (1999), which was derived from the Bermd&Ratner cor-
pus (Bernstein-Ratner, 1987) in CHILDES (MacWhinney andvgri985). The

1. In our descriptions here of both the unigram and bigrametsyave omit
certain details that are required to account for the presehatterance bound-
aries in the input corpus. These details can be found in Gatleivet al. (2006).




(@)

yu want tu si D6 bUk
IUk D*z 6 b7 wiT hiz hé&t

(b)

yuwant tu si D6bUk
IUk D*z 6b7 wiT hiz h&t

(©)

yu want tu si D6 bUk
IUk D*z 6 b7 wIT hiz h&t

&nd 6 dOgi &nd 6dOgi &nd 6 dOgi

yu want tu IUk &t DlIs yu wanttu 1Uk&tDIs yu want tu IUk&t Dls
IUk &t Dls IUk&tDIs IUk&t Dls

h&v 6 drINk h&v6 drINk h&v 6 drINk

oke nQ oke nQ oke nQ

WAts Dls WALtsDIs WAts Dls

WAts D&t WAtsD&t WAts D&t

WAL 1z It WALIzIt WALtz It

IUk k&n yu tek It Qt IUk k&nyu tek ItQt IUk k&nyu tek It Qt
tek It Qt tek 1tQt tek It Qt

yu want It In yuwant It In yuwan t It In

pUt D&t an pUt D&t an pUt D&t an

D&t D&t D&t

Figure 1. Segmentation of the first 15 utterances in the corps, according
to (a) the correct segmentation, (b) our unigram model, andd) our bigram
model. See the Appendix for a key to the ASCII phoneme encodin

original corpus contains orthographic transcriptionstténances directed at 13-
to 23-month-olds; Brent removed disfluencies and non-wandsused a phone-
mic dictionary to convert the remaining words into a phonermepresentation.
The resulting corpus consists of 9790 utterances, with & tit33399 word
tokens belonging to 1321 types. The average number of waedsifperance
is 3.41, and the average number of phonemes per word is 2r8thelinput
to the model, utterance boundaries (corresponding to paase provided, but
utterance-internal word boundaries are removed. Theaumterinternal word
boundaries are used only to evaluate the performance of#ters.

In order to evaluate the performance of our unigram modelnaed to in-
troduce a procedure that can identify high-probabilityrsegtations of the in-
put corpus. We used a stochastic search procedure knoaibas sampling,
which works by iteratively performing small random pertatibns to the current
segmentation (inserting or removing one boundary at a tinfd)is algorithm
produces samples from the posterior distribution of sedatiems defined by
the model. A good approximation to the optimal segmentatammbe found by
collecting a large number of samples and choosing the orretiagthighest prob-
ability; in practice, we found that different samples proed qualitatively and
guantitatively similar results. Our evaluation is therefbased on a single sam-
ple taken after 20,000 iterations of the sampler. In theltesiiscussed here, the
parameterny was set to 20; other values afyielded qualitatively similar results.
For more details of the sampling algorithm and results foeovalues ofy, see
Goldwater et al. (2006).

Some example utterances showing the segmentation foundroynigram
model are given in Figure 1(b). As these utterances illtestthe units identified
as words by our unigram model often consist of sequencesmbtwnore actual
words concatenated together. The system seems to be quiteatecwhen it
proposes a boundary, it simply doesn’t propose enough. dotiy these results,
we computed the system’s accuracy in termpre€ision andrecall (also known



Table 1: Accuracy of the two unigram models.

P R BP BR LP LR
Brent 67.0 69.4 80.3 843 53.6 513
GGJ 619 476 924 622 57.0 575

Note: Measures are precision and recall on word tokens (BdRndaries (BP, BR), and
lexicon entries (LP, LR). In all tables, bold indicates thestscoring model.

asaccuracy andcompleteness):

number of correct items found

number of items found
number of correct items found

number of true items

For example, the recall on word tokens is the percentagekefin the true
segmentation that were correctly identified in the modelgnsentation (where
a token is counted as correct only if both boundaries areecttr\We calculated
precision and recall on ambiguous boundaries (i.e., alsiptssboundary loca-
tions except at utterance boundaries), word tokens, and types (i.e., lexicon
entries). The results are shown in Table 1, with scores froem& model pro-
vided as a comparisohThe scores confirm our qualitative observations: bound-
ary precision is very high for our model, but boundary recallery low. As a
result, overall token precision and recall are both lowantim Brent's model.
Lexicon precision and recall are actually better than Bsebtut our low token
accuracy is an indication that errors are often made on trst freqjuent words.

Precision = 100 %

Recall = 100 %

3.3. Discussion

Upon reflection, we should not be surprised at the kind of ssgation found
by our model. Recall that a basic assumption of this modéias words have
the same probabilityegardless of context. However, this assumption is clearly
violated in the corpus. For example, the empirical proligtiif the wordthat in
our data is .024 (i.e., 2.4% of word tokens are the whbat). Following the word
what’s, the probability ofthat rises to .46, but after the wotd, the probability
of that is only .0019. In other words, a single word of context carat¥e/aria-
tions in probability of more than two orders of magnitudet& these variations
are contrary to the unigram assumption of the model, the waly the system
can capture strong word-to-word dependencies is by asguimé sequences of
strongly non-independent words are actually single wofldge system tends to
make this kind of error on the most frequent words preciselyelnise their high
frequency provides a great deal of evidence against indigrere.

Of course, this analysis raises the question of why Brentigram model
does not produce the same kinds of errors as our own modelafi$wer lies

2. Results from Brent's system were obtained using an imeleation by
Anand Venkataraman available at http://www.speechari/people/anand/.



Table 2: Negative log probabilities (x 1000) under each unigm model of
the true segmentation and the segmentation found by each algthm.

Seg: True Brent GGJ
Brent 208.2 217.0 189.8
GGJ 2224 231.2 200.6

Table 3: Accuracy of the two unigram models on the permuted cipus.

P R BP BR LP LR
Brent 77.0 86.1 83.7 97.7 608 53.0
GGJ 942 97.1 957 998 865 622

in the algorithm used to identify a good segmentation. Ihsusut that Brent’'s
algorithm finds a segmentation that is actually very far froptimal under his
model. While we do not know exactly what segmentai®aptimal, we can at
least compare the probabilities of the two segmentationsave (the one found
by our system and the one found by his), as calculated un@atBmodel. Table
2 shows the results of these calculations, which indicatetibth of the unigram
models assign higher probability to the undersegmentedisolthan to either
the solution found by Brent’s algorithm, or the correctlgsented corpus.

To provide evidence that our own algorithm is able to idgrdihear-optimal
segmentation, we created an artificial corpus consistiradj tie same words and
utterance lengths as the original corpus, but with the wpedswuted at random.
Since word order has been randomized, this corpus confarthetmodel’s ex-
pectation that context has no effect on word probabilit®ten we used this
corpus as input to our algorithm, we found that segmentat@nformance im-
proved markedly, as shown in Table 3. Brent's system impavethis corpus as
well, but to a much lesser extent, again indicating problesitis his algorithm.

So far, we have provided evidence that, for two differenguanin models of
word segmentation, the optimal segmentation of a natunglage corpus iden-
tifies many common sequences of words as single words. Ittigalao ask
whether undersegmentation is the result of an optimal setatien strategy un-
der any model that assumes independence between wordsjlesgaof other
properties of the model. A thorough discussion of this goast beyond the
scope of this paper, but we have shown elsewhere using f@amadysis that un-
dersegmentation is indeed a general property of unigranetad@riffiths et al.,
2006). For all but tiny corpora, any reasonable assumptabosit word shapes,
lexicon size, and token frequencies have less influence emprbbabilities of
different segmentations than the assumption of indeperelestween words.

4. Bigram word segmentation
In the previous section, we discussed empirical and thieatetvidence that

defining words as statistically independent units leadsnibetsegmentation of
natural language. We now ask whether modifying this assiommian lead to



better segmentation. We address this question by devejagiifferent model in
which words are assumed to help predict other words. Inqudati, this model
assumes that the probability of a word depends on a singlégueword of
context, so the unit of dependency is a pair of words, or Ibigra

4.1. Model description

Like our unigram model, our bigram model defines the prolitstof a seg-
mentation by assuming that it was generated as a sequenagadday . .. wy
using a probabilistic process. Unlike the unigram modglis generated using
a process that takes into account the previous (alreadyratend® word in the
sequencey;_1:

(1) Decide whether the paitf_1, w;) will be a novel bigram type.
(2) a. Ifso,
i. Decide whethetv; will be a novel unigram type.
ii. a. Ifso, generate a phonemic form (phonemes. . zj;) for w;.
b. If not, choose an existing lexical foriior w;.

b. Ifnot, choose a lexical forirfor w; from among those that have already
been observed following); ;.

Notice that Step 2a, which creates the second word of a négedrh, invokes
the unigram generative process described in Section 3.&.ufflgram process
in Step 2a generates a set of word types which the bigram gsdnesSteps 1-2
assembles into bigrams.

The probabilities associated with the bigram generatioegss are

(1) P((wi_1,w;) is a novel bigranw; _, = I') = —2

ny 408
P((wi—1,w;) is not a novel bigraruw; 1 = 1') =
(2) a. i. P(w;isanovelword (w;—1,w;) is a novel bigram= 5~

P(w; is not a novel wordl (w;_1, w;) is a novel bigram= %
i. a P(w; =z ...2: | w; isanovelword = [[}L, P(x;)
b. P(w; = 1| w;, is nota novel worli= %
b. P(w; = 1| (w;_1,w;) is not a novel bigram and;_; = I') = 20

TLLI
where and~ are parameters of the mod&lis the lexical form ofw; 1, n; and
n( ;) are the number of occurrences in the first1 words of the unigran and
the bigram(l’, 1), b is the number of bigram types in the fiist 1 words, and,
is the number of those types whose second woid This model is known as a
hierarchical Dirichlet process (Teh et al., 2005).

The intuition behind this model is similar to that of the ursioh model. Step
1 says that the more timéshas been generated, the less likely a new word will
be generated following it; this limits the number of bigrarpés. Step 2a is like



Table 4: Accuracy of our bigram model as compared to the unigam models.

P R BP BR LP LR
Brent 670 694 803843 536 513
GGJ (unigram) 61.9 47.692.4 622 57.0 57.5
GGJ (bigram) 79.4 74.0 92.4 835 67.9 58.9

the unigram generative process, except that the prohabitite defined in terms
of bigram types instead of unigram tokens. The idea is thaeseords combine
more promiscuously into bigrams than othersi Has been generated in many
different contexts already, it is more likely to be genedatethis new context.
Finally, in Step 2b, the probability of generatindollowing I’ is proportional
to the number of times this pair has been generated alreddghvieads to a
preference for power-law distributions over the second iite each bigram.

4.2. Simulations and discussion

For our simulations, we used the same input corpus as in tlggaim sim-
ulations, and a similar Gibbs sampling algorithm to idgn&fhigh-probability
solution. The results reported here are witlk 10 andy = 1000. As illustrated
in Figure 1(c), the segmentation found by our bigram modataios far fewer
errors than the segmentation found by our unigram modeluadeérsegmenta-
tion is much less prevalent. Table 4 shows that our bigramahoudtperforms
both unigram models on almost all measures, in several tgsasvide margin.
This improvement can be attributed to a large increase imthary recall relative
to the unigram model, with no loss in precision. In other véptte bigram model
proposes more word boundaries and is just as accurate wilk firoposals.

When the bigram model does make errors, they often fall im® of two
categories. First, a few multi-word sequences are stilite@ as single words.
Second, oversegmentation often occurs at morpheme baasd@he 100 most
frequent lexical items found by the model includes, IN, i , andt, which
correspond to plural, progressive, diminutive/adjedtigad past tense suffixes.
These kinds of errors are not surprising given the similatistical properties
of word boundaries and morpheme boundaries. It is posdilsiethe kind of
information used by this model (patterns of sound sequenaas frequencies,
etc.) is sufficient to distinguish between morphemes andisyaf used in the
proper way. However, it is plausible that additional soarekinformation (e.g.,
semantics) may be required.

5. Conclusion

In this paper, we have investigated the problem of word segatien us-
ing a Bayesian modeling approach. We have presented twereliff kinds of
models, each of which can be seen as an ideal learner whoségoaden-
tify words in continuous speech. The difference betweesedhmodels lies in
their assumptions about how words behave. The unigram nagdames that all



possible word orderings are equally likely, i.e., that tie&trword is statistically
independent of the previous word. In contrast, the bigrardehassumes that the
identity of the previous word can be used to help predict theamt word. In sim-
ulations using these models, we found that the unigram mudposed far too
few boundaries, often identifying common word sequenceasdigidual words.
We have argued that this behavior results from a mismatovdest the inde-
pendence assumptions in the model and the strong word-td-a&pendencies
that are found in realistic input corpora. When these depeciés are taken into
account, as in our bigram model, word segmentation improvakedly. The
importance of considering word-to-word dependencies babeen revealed by
previously proposed unigram models because of biaseslunteal by their learn-
ing algorithms, which prevent these models from findingrmptisegmentations.
Our results are not incompatible with the possibility theants use transi-
tional probabilities or other local statistics to identifprd boundaries. However,
they do imply that statistics and strategies that are saffidior segmenting the
kinds of stimuli found in most behavioral experiments wititmecessarily be
sufficient for completely segmenting natural language. fdulings suggest the
possibility that human learners may exploit statisticéimation in more sub-
tle ways than have typically been investigated, and we hbgethis work will
provide a source of further hypotheses that can be testedghrexperiments.

Appendix: phoneme encoding

Consonants Vowels Rhotic Vowels
| ASCII | EX. | ASCII | EXx. | | ASCII | EXx. | | ASCII | EX. |
D THe h Hat & thAt # ARe
G Jump k Cut 6 About % fOR
L bottLe | Lamp 7 bOY ( hERE
M rhythM m Man 9 fly ) IURE
N SING n Net A bUt * hAIR
S SHip p Pipe E bEt 3 bIRd
T THin r Run | blt R buttER
w WHen s Sit (0] 1AW
z aZure t Toy Q bOUt
b Boy \Y View U pUt
c CHip w We a hOt
d Dog y You e bAY
f Fox z Zip i bEE
g Go - buttON o] bOAt
u bOOt
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