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Abstract ple still use positive tests in situations where negatiststare

Whether scientists test their hypotheses as they ought to has in- more likely to yield falsification, such as those encourdere

terested both cognitive psychologists and philosophers of sci- N Wason's (1960) experiment. We complement this analysis
ence. Classic analyses of hypothesis testing assume that peo-by showing that the PTS is more likely to yield falsification

ple should pick the test with the largest probability of falsi- g optimally reduces uncertainty provided the world is in-
fying their current hypothesis, while experiments have shown

that people tend to select tests consistent with that hypothesis. herentlydeterministiqi.e., given the rule is true, there is only
Using two different normative standards, we prove that seek- one possible next outcome). This suggests we might explain
ing evidence predicted by your current hypothesis is optimal ;se of the PTS as the result of an assumption of determinism
when the hypotheses in question are deterministic and other . .
reasonable assumptions hold. We test this account with two ON the part of human learners, consistent with recent esult
experiments using a sequential prediction task, in which peo- showing that children assume that many causal relatioaship
ple guess the next number in a sequence. Experiment 1 Shows gra geterministic (e.g., Schulz & Sommerville, 2006; Gel-
that people’s predictions can be captured by a simple Bayesian e - ! ’
model. Experiment 2 manipulates people’s beliefs about the Man, Coley, & Gottfried, 1994). This emphasis on the struc-
probabilities of different hypotheses, and shows that they con- ture of the environment parallels similar strategies pedsa

firm whichever hypothesis they are led to believe is mostlikely.  gther rational analyses (e.g., Oaksford & Chater, 1994).
Keywords: confirmation bias; rational analysis; hypothesis The plan of the paper is as follows, first we introduce the

testing; Bayesian inference. task of predicting the next event in a sequence. Under the as-

How shoulda scientist seek evidence to help her find theSUmption that hypotheses are deterministic (given a seguen
hypothesis that explains a phenomenon? Does this diffe?f events, a hypothesis predicts only one next event), we
from how peopledo seek evidence? Popper (1935/1990) ar-Prove that the PTS is optimal in many situations. Next, we
gued that scientists ought to follow the strategyfaisifica- ~ define a Bayesian model of sequence prediction for numeri-
tion, seeking evidence most likely to falsify their current the- ¢al stimuli, and use a behavioral experiment to show that it
ory. Interested in whether people adhere to this strategy, W cap_tures human predictions. If people are seeking evidence
son (1960) investigated how people intuitively test thea-t ~ Optimally, then they should choose to verify the next num-
ories. In the classic 2-4-6 task, participants were askemto Der predicted by the hypothesis they believe is most likely.
cover a relational rule after being told that one tripjet4,6), I @ second experiment, we demonstrate that changing a per-
conforms to the rule. The true rule, increasing numbers, supSon’s beliefs about the probability of hypotheses affeiwesrt
sumes most potential rules (e.g., two more than the previoudVidence-seeking strategy. We conclude by discussing how
number) with every triplet predicted by a potential rulecals OUr results relate to previous work.
being valid under the increasing numbers rule. Thus, thee tru A . .
rule can only be discovered by testing numbers that are not Sequence prediction and hypothesis testing
predicted by your current best guess at the rule (negatste teGiven a sequence of events, how do we predict what will oc-
strategy or NTS). Rather than follow the NTS, participantsCur next? For example, suppose you see a woman outside of
choose to test triplets predicted by their current hypathes an airport and then at the security checkpoint. How likely is
(the positive test strategy or PTS) even though it is impossilt that she stays at the security checkpoint (she is a sgcurit
ble to find the true rule this way. For example, many partic-guard) or walks to a gate (she is a passenger or crewmember)?
ipants in the 2-4-6 task followed the PTS by entertaining theClearly, the probability of each possible next event depend
hypothesis that each number is two more than the previoudn the probability of the hypotheses explaining the obskrve
number and testing sequences consistent with this hypoth&vents and the probability of the next event under these hy-
sis, such a$1,3,5). The tendency to follow the PTS is just Potheses. Since there is no means of predicting the next even
one instance of what has become known ascthgirmation ~ With complete certainty, this is an inductive task.
biasor the general human tendency to interpret and seek ev- This problem can be expressed in terms of probability the-
idence fitting their current theory differently from eviden Ory. Given a sequence of previous events or objexts (

against it (Klayman & Ha, 1987). (X1,...,X—1)) the probability of a next evenk) is
In this paper, we outline a set of environmental conditions o _
under which the PTS is actually an optimal strategy. Previ- P(4[%) = ZP(X'”]’ R)P(hIX) @)

ous work has identified settings in which the PTS or NTS is

more likely to yield falsification (e.g., Klayman & Ha, 1987) whereP(x;|h,X) is the probability of the next event under hy-
However, this normative analysis produces predictions thapothesish, andP(h|X) is the posterior probability of that hy-

are quite different from human behavior. For example, peopothesis given the sequernkeThis posterior probability can



be obtained from Bayes’ rule, with with

P(ric,X) =S P(r|h,c,X)P(h|X)
P(Xh)P(h) - 2
Y P(XI)P(H) being the probability of the outconrefrom the testc given
) ) o our previous observatiorns In sequential prediction, the out-
being the normalized product of the likelihod®&(x|h), and  come of a test is either that the queried event is next in the se
the prior probability of the hypothesB(h). For the above yence or not. The probability of a positive resporse ()
example, the probability that the woman is a security guargg 5 queryc is simply the probability that is the next event
instead of a passenger depends on the relative probabditie , ihe sequence, which dependstoandx.
a security guard and a passenger going to the security check-gince the outcome of a test is unknown prior to performing
point and the base rates with which passengers and securifife test, the information gain cannot be used directly el
guards appear at the airport. we define the optimal test to be the test that has the largest

Suppose we now meet the woman's husband, and get t@pected information gaifEIG). The optimal choice is
ask him one (yes or no) question about where she will be

next. What is the best question to ask in order to discover € = argmaxg;cx [l (P(h[X), P(h[X,r,C))]
her role (i.e., whether she’s a security guard, passenger, o ¢
crewmember)? This is equivalent to a scientist determiag thwhereE,[f(r)} =3, f(r)P(r) is the expectation of the func-
best question to test her hypothesis. In the remainder of thgon f with respect to the distributioR. This reduces to
section, we show that there is a simple answer to this questio
provided our hypotheses adeterministic allowing only one ¢ = amg ”laXZ [H(P(h|X)) —H(P(h|X,r,c))]P(r|c,X)
value forx givenX (ie., that there is only one place the woman r
will go for each hypothesis about her identity). In this gase
the positive test strategy (asking about the event thaeeorr
sponds to the most probable hypothesis) is optimal. Thes, thpeing that which minimizes uncertainty after the response.
best question is to ask her husband is whether she will be in
the location that our best guess about her identity predicts 1he optimality of positive test strategies

We will use two methods to identify what question we Instead of directly deriving general results on the usefssn
should ask. The firstis the probability of falsification - ek  of positive test strategies, we first consider the probleth wi
the geustion that gives us the highest probability of faisd  simplifying assumptions. We narrow our hypothesis space to
our current hypothesis (Popper, 1935/1990; Klayman & Hadeterministic hypotheses which all make different predict
1987). The second is a measure based on information theofgr the next event in the observed sequence. Under these con-
(Klayman, 1987; Oaksford & Chater, 1994). According to ditions, every test is a positive test for some hypothesid, a

P(hix) =

arg rrginz H(P(hr,c,X))P(r|c,X)

information theory, thentropy a positive response from such a test yields conclusive verifi
cation of the tested hypothesis, while a negative respatse f
H(P(x)) = — z P(x)log, P(X) sifies the tested hypothesis but is ambiguous about all other
X

hypotheses. We show that testing the event predicted kg the
measures the amount of randomness in a probability distri_posteriori m.ost probable hpr’theSis maximizes the probabil-
bution P(x). For example, the entropy of a fair coin is 1 ity of.faIS|fy|n.g t_h"?‘t hypothesis a_qd the E|G,' ,
(.510g,.5+ .510g,.5 = 1) and the entropy of a two-headed Using maximizing the probability of falsifying the current

coin is 0 (Llog 1+ 0log,0 = 0, where 0log0 is defined to working hypothesis as our normative standard (Klayman &
Ha, 1987), the analysis is simple. The probability that-test

be 0). This matches our intuition that we are far more cer- : ; ) o
tain of the outcome from the toss of a two-headed coin. Thd"d the choicec, consistent with hypothests;, falsifies that
ypothesis is £ P(h®|X). If you want to falsify a particular

amount of information gained from observing an outcome i 3 hesis. then it i he choice i ) .
the difference between the entropy of the distribution charlyp(;t hisx's’_t in itis be‘?’t LO teSté %f oice f't pl)lred;]ctseﬁm
acterizing our beliefs before and after that observatidnusT — P(h]%) is the sum of the probabilities of all other hy-

the information gained about the a set of hypotheses fortwhic POtheses. Consequently, to falsify the current hypothgsis
our current beliefs are described by the posterior distiohu should test the choice it predicts and thus the PTS is optimal

P(h|x), given a sequence of objects from performing a test The same result holds when we 'Fa_ke maximizing the.EIG as
and learning its outcome is our goal. As shown above, maximizing the EIG is equivalent
to minimizing the expected entropy of the posterior distrib

1(P(h[X), P(h|X,1,C)) = H(P(h|R)) — H(P(hX.,C)) tion i_nformed by the results of_the test. As the hypothesles al
predict different events next, if we learn thais in fact the
ing hypothesis is true, resulting in an entropy of 0. Thus, th
P(NZr,C) = P(r|h,c,X)P(h[X) expected entropy reduces to the product of the posteritr pro

P(r|c,x) ability that the tested hypothesis is false and the entrdpiyeo



renormalized posterior without the tested hypothesis hypothesis with posterior probability greater than or ¢égoa
a half, then confirming that hypothesis (which is the current
H < P(h%) ) (1—P(h°R)) best hypothesis) is the optimal strategy. If this is not e
1-P(h°[x) confirming the current best hypothesis can be suboptimal, as

whereh® is the hypothesis corresponding to the chae it may be possible to construct an amalgam of hypotheses that

This simplifies to agree on some and have posterior probabilities that sum to
a value closer to 8. However, such circumstances are un-
—(1-P(h%) PORX) 4, —POIX) usual, and our result thus indicates that in many cases where
hape 1= P(h°[%) = 1-P(h[%) we believe there is a rule governing a sequence of events, the

— Zl P(hR) |ng P(hR) + ; P(hR) |ng(1_ P(hCR)) positive test strategy is optimal.
h#£he hZhe

, _ o A Bayesian model for numerical sequences
The first of the two sums is the entropy of the posterior with-

8g}jtgi?n%ﬁﬁgisbgggglgg?hg]ﬁ)};esgergohnyggtahseﬁlost’ v%r;g g\]/% SeCThe analysis of the positive test strategy outlined above re
sum. Consequently, we can rewrite this quantity as fles upon the gs_sumptlon that we can gccurately charae.terl_z
people’s predictions about sequences in terms of Bayesian i
H(P(h[X)) + P(h°[%) log; P(h°[X) + (1 P(h°|X))logo (1~ P(h°[X))  ference. In the remainder of the paper, we develop a Bayesian
Since the entropy of the posterior does not depend on thgmdel ofa part|cular_k|nd of sequence prediction — predicti _
choicec, it does not influence the optimal choice. This meansof the next element in a sequence of numbers — and use this
that the choice that maximizes the EIG is model to test this basic assumption, and to show that people
A_ P(REIR) [0as POREIR) 4 (1— POREIR) l0an(1 — P(REIR are sensmve to the relative pr'obabllltles of dlfferenpbshe—
¢=angnn (W1%)logz P(HX) -+ ( (h"1x))logo( (h"1%)) ses in exactly the way that this account predicts.

which is the negative entropy of a distribution in whibh The domain of our model of sequence prediction is num-
and its alternatives are the only two possible outcomes. ~ Pers. We assume that the sequence of observed numbers,

The entropy of a distribution is concave (there is one globalk = (X1,---,%-1), is generated from some relational rule
maximum) and is maximized when the distribution is uniformh — X @nd that people try to identify this rule in order to
(Cover & Thomas, 1991). Thus, the optimal strategy is tomake accm_Jrate predictions. Our model is based upon the con-
make the choice corresponding to the hypothesis with post€2ePt learning framework presented in Tenenbaum (1999) and
rior probability closest to . It is easy to show that this is Tenenbaum and Griffiths (2001), a version of which was ap-
the hypothesis with highest posterior probabfiitfhere are  Plied to a simple “number game” similar to our task. In this
two cases. If all probabilitieB(h|%) are less than.6, thenthe ~ MOodel, a hypothesis or concept is a set of numbers. Although
hypothesis for whictP(h|R) is greatest is clearly the closest this model captures people’s generalization judgmengs, (e.
to 0.5. If the probability of some hypothesis is greater thandiven 8 is in the set, what is the probability that 16 is in
0.5 there is only one such hypothesis, and the distance of th&'® Set?), it does not allow for inferences about sequences
probability of all other hypotheses from®will be at least ~ Of numbers. Thus, we extend this Bayesian model to make
as great, as these hypotheses divide the remaining pripabil Predictions about sequences. The goal of the model is not to
mass. Thus, confirmation — choosing to test the hypothesi2Pture all the intricacies of huma_n sequence prediction, b
with highest posterior probability — maximizes the EIG. rather to be a reasonable approxmauon that we can use to

We can now generalize this analysis for the EIG, relaxing“nderstand human hypothesis testing.
the assumption that all hypotheses make distinct predistio  Instead of defining the hypotheses as sets of numbers, each
for the next event. In the general case, every choiparti-  hypothesis is a rule frork, previous numbers to the possi-
tions the hypothesis space into two sets. £t be the set  ble next numbers of the sequence. The likelihood assigns a
of hypotheses that predictas the next event an#f® be the  probability distribution over next numbers given the poed
set of hypotheses that do not. The set that makes the wrorlg observed numbers. We divide the types of hypotheses into
prediction will be eliminated, receiving probability 0,chithe  two separate categories: deterministic and non-detestruni
set that makes the right prediction will have their posterio A deterministichypothesis, such as increasing odd numbers,
probabilities renormalized. The analysis then proceeus si  has only one correct next number and conforms to the fol-
larly to the derivation given above, replacinfgwith #¢, with  lowing form: h(x _1,...,% ;1) X* — X. For example, the
P(HC|R) = S hese P(N[X), although there is an extra wrinkle likelihood function for the sum of the last two numbers rule
produced by the fact that confirmation does not guarantee affribonacci sequence, = 2) is:
entropy of 0. This analysis shows that the optimal test is tha .
which produce®(#H¢|X) closest to &. If there is a single 1 ifx=%-1+X-2
PR ProgHS PR ’ POIh,Xi-1,%-2) = { 0 otherwise

IMore precisely, choosing the hypothesis with highest posterior

probability is always at least as good as choosing any other hypoth%-: | h b f
sis, with equality holding in the case where just two hypotheses hay&ONnversely, more than one number may conform twa-
non-zero posterior probability. deterministichypothesis. For example, the following likeli-



hood function models the increasing numbégs=£ 1): survey containing one subsequence of each rule. Each par-

) ticipant received one survey, with approximately 11 partic
P(xi|h,X_1;V) = { TIL X2 X-1AX —X_1 SV ipants seeing each survey. _To provide _the strongest test of

0 X <Xi-1 our model, we asked participants to write down what they

believed the next number would be, without imposing any

wherev is the largest increase possible from the last numberegnstraints on this choice. Participants were told thatthe

These hypotheses are partitioned into seven different Seﬁlences may have been generated by a simple relational rule

of the same rule typexC+K, sum of the last two numbers, \hich may not be deterministic, with “decreasing numbers”

pairwise mixtures okC+K rules, repeat the lakk numbers,  peing given as an example, and asked to make predictions for
thei-th power (fori = 2 and 3), primes, and the random rules gach sequence independently.

(decreasing, increasing, and random numbers). X@e- K
hypotheses cover any rule of the fosn=Cx_1 + K, and  Results
we considere@ € {-3,...,3} except zeroK € —5,...5. In
total, this yields 135 hypotheses. The prior probabilityatbf
rules of a given type is uniform within that set, and the prior
probabilities of the rules of different types are free pagam
ters. Since rules are based on the values of preceding nurE
bers, we also need a scheme for generating the initial nianbe

in a sequence. We do this by samplixgfrom a distribution . . ) -
q Y plagf the increasing numbers pattern is random, both the partici-

assigning probability 11+ | to the positive and negative ant and model predictive distributions are diffuse, langr

integers, and subsequent initial numbers from the same di%. lation. Th dictive distributi adl
tribution centered around the preceding number. This a&cts g is correlation. The predictive distributions are neadign-

an implicit penalty against rules for whid@ is high, as they tical for the four deterministic sequences, with- 0.98. The

require more draws from this distribution estimated prior probabilities of the seven types of hypothe

The model defined in this section provides all we need oS are:xC+K is 0.85, sum of the last two is 16, mix-

compute the posterior distribution over hypotheses givast a tuges f(f;<5C'thrt< IS 1'5% %)O(;S repeat t_h%lasit&r;ug\bers IS
guence of numbers (Equation 2) and consequently to predigf T 0 00’8:-r ngriri'so 006 pnrzeiri '? Xin i ,O%Zreas—
the next number in a sequence (Equation 1). Experiment g1s 8.086, random 1S ©.9U0, a creasing IS ©.99.

examines how well this model characterizes the predictions aving verified that a Bayesian model can capture human
that people make about sequences of numbers. sequence predictions, we can use it to test how human hy-
pothesis testing is affected by prior knowledge. The atglys

Experiment 1: Predicting predictions of optimal hypothesis testing given above predicts thapfeeo

. . - . should seek to confirm the hypothesis that they assign high-
In this experiment, participants were asked to predict theest posterior probability. To test this prediction, Expet

next number for five sequences, each generated by a diffef; manipulated the prior probability of different types of-hy

ent rule. There were five patterns, four deterministic arg on : : _
stochastic, each expressed in four sequences of increasi gtheses to see if we could induce people to change which
' P q 9potheses they sought to confirm.

size (length ranging from three to six). The four determin-
istic patterns were chosen to illustrate participants’ trel

model’s ability to make judgments on simple and complex
rules and when the given sequence was ambiguous as to théethods
underlying rule. The stochastic pattern was chosen to demorb

strate both participants and the model make sensible delateefézgr?agt; , Q);?;ael ;feg; u;:r(tei::?rZ(:]LtJ:t\:\a/ngasrtllci:t”i)r?[tsghln
judgments when the generating rule is not deterministic. Y ) P P

conditions, with 22 participants in theC + K condition, 22
Methods participants in the “sum last two” condition, and 23 partici
pants in the control condition.

As shown in Figure 1, the model and human prediction distri-
butions are in close correspondence. The predictions shown
for the model were obtained by optimizing the prior proba-
ility of the different hypothesis types to fit the human data
ut are somewhat robust to variation in the prior. The cor-
relation between the sets of predictionsis- 0.87. Since

Experiment 2: Manipulating confirmation

Participants A total of 146 undergraduates participated in
the experiment for course credit or a free ice cream voucherStimuli  In order to establish the priors in different sequence
Stimuli  Five relational rules were tested: repeat theperm?n enV|.rpnments, parpapantsmth@JrKand sum
; last two” conditions were trained on 100 sequences of hum-
last number (1,1,1,1,1,1 - simple), sum of the last two L ) -
. : bers. The training sequences in tk€ + K condition had a
numbers (1,1,2,3,5,8 - complex), increasing odd num.
; . . . high prevalence (87%) of sequences generated by rules of the
bers (3,5,7,9,11,13 - ambiguous), increasing prime UM m xC+ K and no sequences generated by summing the
bers (3,5,7,11,13,17 - ambiguous), and increasing numbe q g y 9

S ! .
; f&st two numbers, and vice versa in the “sum last two” con-
(2,5,17,33,94,100 - stochastic). dition (with 89% of sequences conforming to the target rule)
Procedure The four subsequences of each rule were ranTest selection was probed with 21 sequences consistent with
domly distributed across four different surveys, with eachboth the sum of the last two numbers and @+ K rule,
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Figure 1: Results of Experiment 1. Each row of plots showspitealictions for one sequence as the number of elements
increases from 3 to 7 across the columns. The five rules ugghterate the sequences are (from top to bottom) repeatexy on
sum of the last two numbers, increasing odd numbers, inicigeasld prime numbers, and increasing numbers. The scabeof t
increasing numbers is different and may omit some valuesibf distributions for visual clarity.

shown to participants in all conditions. For example, one seprior probabilities established by the training condition
quence,(3,6,9), can be interpreted as1+ 3 or the sum of The responses produced by the participants for all se-
the last two numbers (86 = 9). qguences were grouped into three categorie€ + K, sum

Procedure In the training phase, participants were asked to0f the last two numbers, or other. Two coders, one blind

predict the next number in the sequence and the underlyinff the hypothesis and both blind to condition, assigned the
rule, and then told whether their responses were correet. TH 1/€S People selected as belonging to these three grougps, wi
group of participants in the control condition were notgad ~ Nigh inter-rater reliability kK = 0.90). As the model pre-
any sequences and only were given the test portion of the efiCtS: participants were sensitive to the environmentrgive
periment. In the test phase, participants were told that thethfalr training CF’”d'“O“ and changed thglr responses appro
could pick one number and find out whether that number wagately (see Figure 2). Although participants did not con-
the next in the sequence, being told to select the number thgfm the ap_proprlate h_yp_otheS|s for Every sequence as the
would help them figure out the underlying rule the best. They"'Cdel predicts, the variation was statistically significatar-
were asked to write down both what they thought the rule wad€iPants in the “sum last two” condition tested the sum of
and their number choice. The experiment was administere[pe last two numbers significantly more often than partici-

. . . 2 _
on a computer with instructions given by the experimenterPants in either the«C+K andltlon &%(2) =9.71,p< 0.01)
The participants were also provided a calculator. or the control conditionX*(2) = 19625,p < 0.01). Ad-
ditionally, the responses for the sum of the last two num-

Results bers and control conditions were not significantly différen
(X3(2) = 1.11, p > 0.55). Thus, when testing their theories
and hypotheses, people are sensitive to the prior probabili

L - : o fies in the environment, choosing to confirm the hypothesis
same rule as their training condition. Since the priors ithbo :
rendered most probable by that environment.

the control (established by the priors learned from Experi-
ment 1) andxC + K conditions are similar, our main concern
is whether participants are more likely to confirm the sum of
the last two rule when trained in the “sum last two” condition We have shown that the PTS is optimal under the assump-
For all of the test sequences, the model predicts confirmatiotion that the hypotheses under consideration are detegmini
of the current hypothesis, which in turn is determined by thetic, using both maximizing the probability of falsificatiamd

If participants are sensitive to the prior probabilitiesdif

Discussion and Conclusions



numbers for Wason (1960), multiples of five for Nelson and
Movellan (2001)) picks a superset of the outcomes congisten

N
o
1

8¢ = ;ir;KLast Twd with the most probable hypothesis. This is where our anglysi
16F | [ Other differs from previous work: by assuming that hypotheses are

deterministic, we require them to pick only a single predic-
tion and thus no hypothesis strictly subsumes another.
Our analysis indicates that the positive test strategyfis op
mal in a particular setting: when hypotheses are detertitnis
in their predictions. This is precisely the setting thatdeo
face in our numerical prediction task, where hypotheses are
relational rules. However, in other settings — namely those
where one hypothesis can be a superset of another — the PTS
is suboptimal. In the spirit of previous rational analysés o
confirmation (Oaksford & Chater, 1994), we propose explain-
Sum Last Two Traini;‘; X dition Control ing the fact that people pursue a suboptimal strategy irethes
non-deterministic settings as a consequence of assuraption
Figure 2: Results of Experiment 2, averaged over parti¢gpan about the structure of their environment — in our case, that
in each group. Error bars show one standard error. rules are deterministic. If we live in a deterministic warld
then choosing tests that confirm our expectations might be a
simple adaptive strategy for this environment. We are in the

redgctlon of unc ertamty'as measures of test utility. Our ex process of developing a means of confirming this hypothesis.
periments provide the pieces of evidence needed to connect
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