SOME GENERALIZATIONS ON COUNTING BINARY STRINGS

JOSHUA T. ABBOTT
NEW COLLEGE OF FLORIDA

Abstract. Extending R. Grimaldi’s work on binary strings and Jacobsthal numbers for the language \(A = \{0, 01, 11\} \), we will examine some general properties for counting binary languages. We focus mainly on counts for the number of strings of length \(n \) inside the Kleene closure of a given language. We will discuss how these counts are affected when adding additional elements to a language. We also present counts for the number of 0’s and 1’s inside these binary strings of length \(n \).

Key Phrases: binary strings, Jacobsthal numbers, symbol codes

1. Introduction - Trivial Generalizations of \(a_n \)

Starting with the alphabet \(\Sigma = \{0, 1\} \), let \(A \) be the language \(\{0, 01, 11\} \), a subset of \(\Sigma^* \), the Kleene closure of \(\Sigma \), as in Grimaldi[1]. Let \(a_n \) count the number of distinct binary strings of length \(n \) in \(A^* \), the Kleene closure of \(A \). Then \(a_n = a_{n-1} + 2a_{n-2} \), for all \(n \geq 3 \), with \(a_1 = 1, a_2 = 3 \); because to obtain a string of length \(n \), we either append 0 to the right of a string of length \(n-1 \) in \(A^* \), or we append 01 or 11 to the right of a string of length \(n-2 \) in \(A^* \). Since the initial conditions can be determined easily, we could solve this recurrence relation to obtain \(a_n = J_n \), the \(n^{th} \) Jacobsthal number. The rest of this paper will only be concerned with finding recurrence relations in general for binary languages.

Let \(A^c \) be the bitwise complement of a language \(A \). For example, if \(A = \{0, 01, 11\} \) as before, then \(A^c = \{1, 10, 00\} \), and by an analogous argument as given before, \(a^c_n = a^c_{n-1} + 2a^c_{n-2} \). Thus, \(A \) and \(A^c \) share the same \(a_n \), the number of binary strings of length \(n \). It is also rather trivial to note if \(\Sigma \subseteq A \), then \(a_n = 2^n \).

One last simple general result is if \(A = \{x_1, x_2, \ldots, x_m\} \) with \(|x_1| = |x_2| = \ldots = |x_m| = \beta \), then

\[
a_n = \begin{cases}
 \frac{m \beta^n}{\beta^\beta} & n \mod(\beta) = 0 \\
 0 & \text{else}
\end{cases}
\]
2. Some Non-trivial Generalizations of a_n

Definition 2.1. A code C over an alphabet Σ is *uniquely decipherable* if whenever $c_1, \ldots, c_k, d_1, \ldots, d_j$ are codewords in C and

$$c_1 \ldots c_k = d_1 \ldots d_j$$

then $k = j$, and $c_i = d_i$, for all $i = 1, \ldots, k$.

A code is analogous to a language, with codewords being the elements of the language. We will use the terms code and language interchangeably.

Proposition 2.1. If A is a language with k_i elements of length i, then

$$a_n \leq \sum k_i a_{n-i}$$

with equality iff A is uniquely decipherable.

Proof. The summation $\sum k_i a_{n-i}$ is simply a count of appending strings of length k_i to the previous strings of length a_{n-i}. If the language A is uniquely decipherable, then every string in A^* can be decomposed in exactly one way; thus $a_n = \sum k_i a_{n-i}$ in this case. Otherwise, if A is not uniquely decipherable, there are multiple decompositions of strings in A^*, thus a_n is strictly less than $\sum k_i a_{n-i}$. \(\square\)

Example 2.1. Let $A = \{0, 01, 11\}$ as in Grimaldi[1]. Then $k_1 = 1$, $k_2 = 2$, and $a_n \leq (1)a_{n-1} + (2)a_{n-2}$. Further, A is uniquely decipherable, so $a_n = a_{n-1} + 2a_{n-2}$.

Theorem 2.1 (McMillan’s Theorem). If $C = \{c_1, c_2, \ldots, c_q\}$ is a uniquely decipherable binary code with $l_i = \text{length}(c_i)$, then its codeword lengths l_1, l_2, \ldots, l_q must satisfy Kraft’s inequality:

$$\sum_{k=1}^{q} \frac{1}{2^{l_k}} \leq 1$$

Proof. Refer to [2] for a standard proof of this theorem. \(\square\)

Example 2.2. Let $A = \{0, 01, 11\}$ as in Grimaldi[1]. Then $l_1 = 1$, $l_2 = 2$, $l_3 = 2$, $q = 3$, and $\sum_{k=1}^{q} \frac{1}{2^{l_k}} = \frac{1}{2} + \frac{1}{4} + \frac{1}{4} = 1$.

Since the summation equals 1, adding more elements to A violates Kraft’s inequality and will result in a language that is not uniquely decipherable, and thus the count a_n' for this resulting language will be strictly less than $\sum k_i a'_{n-i}$.

There exist methods to compute a_n if A is not uniquely decipherable. We present the following three cases.
Case 1 (Linear Dependence): We can find a linearly independent set from the elements of the language A by removing the linearly dependent elements to yield language A' with an equivalent count $a_n = a_n'$.

Example 2.3. $A = \{0, 00\}$ can be reduced to $A' = \{0\}$, and thus $a_n = a_{n-1}$, with $a_1 = 1$, clearly.

Example 2.4. $A = \{0, 10, 11, 001110\}$ can be reduced to $A' = \{0, 10, 11\}$, since $001110 = 2(0) + (10) + (11)$. A' is uniquely decipherable, thus $a_n = a_{n-1} + 2a_{n-2}$.

Case 2 (Symmetry): If there exist elements $(x)(y)$ and $(y)(x)$ in A, with either x or y also also an element in A, then there is a function $f(n)$ to account for the strings in A^* that have multiple decompositions. Thus $a_n = \sum k_i a_{n-i} - f(n)$.

Example 2.5. Let $A = \{0, 01, 10\}$. We see $010 \in A^*$ decomposes as both $(0)(10)$ and $(01)(0)$. The resulting $f(n) = a_{n-3}$ and thus $a_n = a_{n-1} + 2a_{n-2} - a_{n-3}$.

Case 3 (Least Common Multiple): If there exist elements x, y in A such that $z \in A^*$ can be decomposed as $(x)(y)$ or $(y)(x)$, or a string $z' \in A^*$ that can be decomposed as either i copies of (x) or j copies of (y), then there is a function $g(n)$ to account for the strings in A^* that have multiple decompositions. Thus $a_n = \sum k_i a_{n-i} - g(n)$.

Example 2.6. Let $A = \{1, 00, 000\}$. We see $00000 \in A^*$ decomposes as both $(00)(000)$ and $(000)(00)$, and $000000 \in A^*$ decomposes as both $(00)(00)(00)$ and $(000)(000)$. As a result, $g(n) = a_{n-3} - a_{n-4}$ and thus $a_n = a_{n-1} + a_{n-2} + a_{n-3} - 2a_{n-4} = a_{n-1} + a_{n-2} + a_{n-3} - (a_{n-3} - a_{n-4}) = a_{n-1} + a_{n-2} + a_{n-3} - (a_{n-3} - a_{n-4}) = a_{n-1} + a_{n-2} + a_{n-3} - a_{n-4}$.

The methods used in these cases or a combination of them result in an exact computation for a_n.

3. **Zeros and Ones in the a_n Binary Strings**

Let z_n and w_n count the number of zeros and ones respectively that occur among the a_n binary strings of length n in A^*.

Example 3.1. Let $A = \{0, 01\}$ as in Grimaldi[1]. Then $z_n = (z_{n-1} + a_{n-1}) + (z_{n-2} + a_{n-2}) + (z_{n-3})$ where $(z_{n-1} + a_{n-1})$ takes the previous count of zeros and sums this with the number of elements in a_{n-1} since we are adding one 0 to each, $(z_{n-2} + a_{n-2})$ takes the penultimate count of zeros and sums this with the number of elements in a_{n-2} since we are adding a two bit string 01 which has just one 0, and (z_{n-3}) accounts for adding the two bit string 11 to every element in a_{n-2}, but since there are no new zeros in 11, we simply use the previous zero count z_{n-2}.

$w_n = (w_{n-1}) + (w_{n-2} + a_{n-2}) + (w_{n-3} + 2a_{n-2})$ is constructed from a similar argument as given above.
It is clear that $w_n + z_n = na_n$ and thus $w_n + z_n \leq n \sum k_ia_{n-i}$. There is an interesting underlying structure to these counts that may reveal methods of finding exact counts for w_n and z_n.

Proposition 3.1. Let m_j count the number of occurrences of 0 in strings of length j in A, and let k_i count the number of elements of length i in A. Then

$$z_n \leq \sum (k_iz_{n-i}) + \sum (m_ja_{n-j})$$

with equality iff A is uniquely decipherable.

In lieu of a proof, consider a deeper discussion of the previous example (3.1). As previously shown, $z_n = (z_{n-1} + a_{n-1}) + (z_{n-2} + a_{n-2}) + (z_{n-2})$. Rearranging the terms, we get $z_n = (z_{n-1} + 2z_{n-2}) + (a_{n-1}) + (a_{n-2})$. Similarly, as previously shown, $w_n = (w_{n-1}) + (w_{n-2} + a_{n-2}) + (w_{n-2} + 2a_{n-2})$, and rearranging terms we get $w_n = (w_{n-1} + 2w_{n-2}) + (3a_{n-2})$. Recall that $a_n = a_{n-1} + 2a_{n-2}$ for this language. So w_n and z_n can be constructed from the count a_n and terms that account for the number of zeros and ones respectively in the a_{n-i} strings. A formal proof is analogous to counting argument given for Proposition 2.1.

We have not developed methods to derive exact counts for w_n and z_n, but conjecture they are similar to the methods used in the three cases given for computing a_n.

4. **Conclusion**

We have reviewed methods to compute a_n for arbitrary binary languages and also a bound for counting the number of zeros and ones in these a_n strings. The examples given should help clarify the efficacy of the methods and motivate deeper investigation.

5. **References**

E-mail address: joshua.abbott@ncf.edu